
Draft for Review

Intel® Platform Innovation Framework
for EFI

Data Hub Specification

Draft for Review

Version 0.9

September 16, 2003

Data Hub Specification Draft for Review

ii September 2003 Version 0.9

THIS SPECIFICATION IS PROVIDED “AS IS" WITH NOWARRANTIES WHATSOEVER, INCLUDING ANYWARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANYWARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright 2001–2003, Intel Corporation.

Intel order number xxxxxx-001

Draft for Review

Version 0.9 September 2003 iii

Revision History

Revision Revision History Date

0.9 First public release. 9/16/03

Data Hub Specification Draft for Review

iv September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 v

Contents

1 Introduction ..7
Overview..7
Conventions Used in This Document...7

Data Structure Descriptions ..7
Protocol Descriptions ..8
Procedure Descriptions...8
Pseudo-Code Conventions ...9
Typographic Conventions ...9

2 Design Discussion...11
Data Hub ...11
Data Hub Protocol ...11

Data Hub Protocol Overview ...11
Usage Models ...13

3 Code Definitions...15
Introduction..15
Data Record Header..16

EFI_DATA_RECORD_HEADER...16
Data Hub Protocol ...19

EFI_DATA_HUB_PROTOCOL ...19
EFI_DATA_HUB_PROTOCOL.LogData()...20
EFI_DATA_HUB_PROTOCOL.GetNextDataRecord() ..22
EFI_DATA_HUB_PROTOCOL.RegisterFilterDriver()..24
EFI_DATA_HUB_PROTOCOL.RegisterFilterDriver()..24
EFI_DATA_HUB_PROTOCOL.UnregisterFilterDriver() ..26

Figures
Figure 2-1. Data Hub Protocol Overview..12

Data Hub Specification Draft for Review

vi September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 7

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
data hub in the Intel® Platform Innovation Framework for EFI (hereafter referred to as the
“Framework”). The data hub is a volatile database that is intended as the major focus for the
accumulation of manageability data. This specification does the following:

• Describes the basic components and the usage models of the Data Hub Protocol
• Defines the structure of the data record header and the high-level classes of data records
• Provides code definitions for the Data Hub Protocol and its member functions that are

architecturally required by the Intel® Platform Innovation Framework for EFI Architecture
Specification

Data hub subclasses are outside the scope of this document and are defined in other specifications.

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®

processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.

The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

Data Hub Specification Draft for Review

8 September 2003 Version 0.9

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

Draft for Review Introduction

Version 0.9 September 2003 9

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:

Plain text The normal text typeface is used for the vast majority of the descriptive
text in a specification.

Plain text (blue) In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

Data Hub Specification Draft for Review

10 September 2003 Version 0.9

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

Draft for Review

Version 0.9 September 2003 11

2
Design Discussion

Data Hub
The data hub is a volatile database that is intended as the major focus for the accumulation of
manageability data. The hub is fed by “producers” with chunks of data in a defined format.
Consumers may then extract the data in temporal “log” order. As an example, progress codes might
be recorded in the data hub for future processing. Other data contributed to the data hub might
include, for example, statistics on enumerated items such as memory, add-in buses, and add-in
cards and data on errors encountered during boot (for example, the system did not boot off the
network because the cable was not plugged in).

Some classes of data have defined formats. For example, the amount of memory in the system is
reported in a standard format so that consumers can be written to extract the data. Other data is
system specific. For example, additional detail on errors might be specific to the driver that
discovered the error. The consumer might be a driver that tabularizes data from the data hub,
providing a mechanism for the raw data to be made available to the OS for post-processing by
OS-based applications.

The intent of the data hub is for drivers that enumerate and configure parts of the system to report
their discoveries to the data hub. This data can then be extracted by other drivers that report those
discoveries using standard manageability interfaces such as SMBIOS and Intelligent Platform
Management Interface (IPMI). The alternative to a data-hub-like architecture is to require all
drivers to be aware of all reporting formats.

Data Hub Protocol

Data Hub Protocol Overview
The EFI_DATA_HUB_PROTOCOL defines an abstract memory-based data journal. The protocol
can be used for the following:

• To log data
• To recover data that has been logged to the protocol

The memory-based log only persists for the duration of the boot. The
EFI_DATA_HUB_PROTOCOL also supports the registration of filter driver event handlers that will
be signaled every time data is logged. Optionally, an event handler can opt to get signaled only for
data classes in which it is interested.

The EFI_DATA_HUB_PROTOCOL is well suited to logging errors. Because all data entries are
logged to memory, this protocol emulates the basic function of an error log. A filter driver can be
added that will save the error log entries to a nonvolatile store. The power of the
EFI_DATA_HUB_PROTOCOL is that the filter driver can be loaded at any time in the boot process
and still have access to all the errors that were logged.

Data Hub Specification Draft for Review

12 September 2003 Version 0.9

It is also possible to use the EFI_DATA_HUB_PROTOCOL for other purposes, such as the
following:

• Registering data
• Collecting debug information

In general, any problem that requires production of data over an extended period of the boot
process and the consumption of data at some later time lends itself to the data hub.

The global definition of data includes all the classes and should not be mistaken with the data class.

The figure below shows a high-level overview of the Data Hub Protocol

Data Hub Protocol

Data
Filter Driver

Event Handler

Error Log
Filter Driver

Event Handler

Debug
Filter Driver

Event Handler

Events signaled
when data is logged

Memory-based
journal

for this boot

Protocol: Logs data, Reads log,
(Un)registers event

Figure 2-1. Data Hub Protocol Overview

Draft for Review Design Discussion

Version 0.9 September 2003 13

Usage Models
The architecture allows many possible usage models. How you use it is up to you and your needs.

Logging should always be done using this protocol when possible. Use
DataRecord.DataRecordGuid to allow for the addition of new data log types. Different
information can be logged using this framework, including System Management BIOS (SMBIOS)
error records or structures, Intelligent Platform Management Interface (IPMI) error records, POST
codes, and debug information.

To log to nonvolatile RAM (NVRAM) error logs, an error-logging FilterEvent will be
required to abstract the specific logging rules.

NOTE
Remember that EFI_DATA_HUB_PROTOCOL only exists in the Boot Services time and cannot be
used to log errors from Runtime.

When defining a new DataRecord.DataRecordGuid, it is important to consider what level
of abstraction is required. The easy answer may be to pick the error log structure of the standard
you are trying to follow. While this approach will work, it will likely have a detrimental impact on
the logging code. Does every subsystem that logs errors now need to be changed to support the
new error-logging scheme? Making the logging code log format independent is typically a better
answer. Another alternative is to consider whether you can convert from a currently supported log
type to the type you need to log.

Data Hub Specification Draft for Review

14 September 2003 Version 0.9

Draft for Review

Version 0.9 September 2003 15

3
Code Definitions

Introduction
This section contains the basic definitions of the data record header and the Data Hub Protocol. The
following protocols, functions, and data types are defined in this section:

• EFI_DATA_RECORD_HEADER and the definitions for DataRecordClass, which are used
to filter data types at a very high level

• EFI_DATA_HUB_PROTOCOL

Data Hub Specification Draft for Review

16 September 2003 Version 0.9

Data Record Header

EFI_DATA_RECORD_HEADER

Summary
The standard header that appears at the start of each data record that is logged or read.

Prototype
typedef struct {

UINT16 Version;
UINT16 HeaderSize;
UINT32 RecordSize;
EFI_GUID DataRecordGuid;
EFI_GUID ProducerName;
UINT64 DataRecordClass;
EFI_TIME LogTime;
UINT64 LogMonotonicCount;

} EFI_DATA_RECORD_HEADER;

Parameters
Version

The version of the header. This specification defines the value as 0x0100; see
“Related Definitions” below.

HeaderSize

Size of the header in bytes.

RecordSize

Size of the data in the record in bytes.

DataRecordGuid

A GUID that defines the semantic contents of the data that follows the header. This
specification does not define specific DataRecordGuid types. Because the
DataRecordGuid is a GUID, there is no need for a centralized allocation of
DataRecordGuid values. Type EFI_GUID is defined in
InstallProtocolInterface() in the EFI 1.10 Specification.

ProducerName

A GUID that identifies the component that produced this header and its associated
data. Type EFI_GUID is defined in InstallProtocolInterface() in the
EFI 1.10 Specification.

DataRecordClass

Used to tag the general class of records being logged. See “Related Definitions”
below.

Draft for Review Code Definitions

Version 0.9 September 2003 17

LogTime

Represents the time the data was logged. If time services are not available at the time
the data is registered, this field will be set to all zeros. Type EFI_TIME is defined in
GetTime() in the EFI 1.10 Specification.

LogMonotonicCount

Used to uniquely identify each data record inside the data hub.

Description
Each data record that is logged or read starts with a standard header of type
EFI_DATA_RECORD_HEADER.

The DataRecord.DataRecordClass is used to tag the general class of records being logged.
The class can be used to filter out a DataRecord.DataRecordGuid that is unknown to a
consumer. The class is high-level information such as whether this record is a debug, error, or data
record. All possible values of DataRecordClass are defined or reserved by this specification;
see “Related Definitions” below.

Each data record header contains a LogMonotonicCount that is guaranteed to be unique for the
duration of a boot. A monotonic count is simply a value that is guaranteed to increase over time.
Thus the LogMonotonicCount is used to uniquely identify each data record inside the data hub.

Related Definitions
//**
// Version value
//**
#define EFI_DATA_RECORD_HEADER_VERSION 0x0100

//**
// DataRecordClass values
//**
//
// Definition of DataRecordClass. These are used to filter
// out data types at a very high level. The
// DataRecord.DataRecordGuid still defines the format
// of the data.
//

#define EFI_DATA_CLASS_DEBUG 0x0000000000000001
#define EFI_DATA_CLASS_ERROR 0x0000000000000002
#define EFI_DATA_CLASS_DATA 0x0000000000000004
#define EFI_DATA_CLASS_PROGRESS_CODE 0x0000000000000008

Data Hub Specification Draft for Review

18 September 2003 Version 0.9

Following is a description of the fields in the above definition.

EFI_DATA_CLASS_DEBUG This class is used to signify debug information. It is not intended
to be logged to error logs and it does not contain data for
normal system operation.

EFI_DATA_CLASS_ERROR This class is used to signify error information. This information
is destined for nonvolatile error logs. It does not contain data
needed for the normal operation of the system.

EFI_DATA_CLASS_DATA This class is used to signify data that can be used to boot the
system or for informational purposes. It is not intended to be
logged to nonvolatile error logs.

EFI_DATA_CLASS_PROGRESS_CODE This class is used to signify data that was logged via the
ReportStatusCode() API. See the DXE CIS for the
definition.

Draft for Review Code Definitions

Version 0.9 September 2003 19

Data Hub Protocol

EFI_DATA_HUB_PROTOCOL

Summary
This protocol is used to log information and register filter drivers to receive data records.

GUID
#define EFI_DATA_HUB_PROTOCOL_GUID \

{ 0xae80d021, 0x618e, 0x11d4, 0xbc, 0xd7, 0x0, 0x80, 0xc7,
0x3c, 0x88, 0x81 }

Protocol Interface Structure
typedef struct _EFI_DATA_HUB_PROTOCOL {

EFI_DATA_HUB_LOG_DATA LogData;
EFI_DATA_HUB_GET_NEXT_DATA_RECORD GetNextDataRecord;
EFI_DATA_HUB_REGISTER_DATA_FILTER_DRIVER

RegisterFilterDriver;
EFI_DATA_HUB_UNREGISTER_DATA_FILTER_DRIVER

UnregisterFilterDriver;
} EFI_DATA_HUB_PROTOCOL;

Parameters
LogData

Logs a data record. See the LogData() function description.

GetNextDataRecord

Gets a data record. Used both to view the memory-based log and to get information
about which data records have been consumed by a filter driver. See the
GetNextDataRecord() function description.

RegisterFilterDriver

Allows the registration of an EFI event to act as a filter driver for all data records that
are logged. See the RegisterFilterDriver() function description.

UnregisterFilterDriver

Used to remove a filter driver that was added with RegisterFilterDriver().
See the UnregisterFilterDriver() function description.

Description
The EFI_DATA_HUB_PROTOCOL is used by any agent in the system that wishes to log data or to
be notified whenever something is being logged on the system.

Data Hub Specification Draft for Review

20 September 2003 Version 0.9

EFI_DATA_HUB_PROTOCOL.LogData()

Summary
Logs a data record to the system event log.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_DATA_HUB_LOG_DATA) (

IN EFI_DATA_HUB_PROTOCOL *This,
IN EFI_GUID *DataRecordGuid,
IN EFI_GUID *ProducerName,
IN UINT64 DataRecordClass,
IN VOID *RawData,
IN UINT32 RawDataSize
);

Parameters
This

The EFI_DATA_HUB_PROTOCOL instance.

DataRecordGuid

A GUID that indicates the format of the data passed into RawData. Type
EFI_GUID is defined in InstallProtocolInterface() in the EFI 1.10
Specification.

ProducerName

A GUID that indicates the identity of the caller to this API. Type EFI_GUID is
defined in InstallProtocolInterface() in the EFI 1.10 Specification.

DataRecordClass

This class indicates the generic type of the data record. This generic nature enables
filtering without having to know every possible DataRecordGuid. See “Related
Definitions” in EFI_DATA_RECORD_HEADER for defined high-level classes of
records.

RawData

The DataRecordGuid-defined data to be logged.

RawDataSize

The size in bytes of RawData.

Draft for Review Code Definitions

Version 0.9 September 2003 21

Description
This function allows any agent to log data. This member function takes the input arguments
(DataRecordGuid, ProducerName, DataRecordClass, RawData, and
RawDataSize) and creates an EFI_DATA_RECORD_HEADER followed by the record-specific
data. LogData() is responsible for adding Version, HeaderSize, LogTime, and
LogMonotonicCount to the EFI_DATA_RECORD_HEADER and inserting it into the memory-
based log.

All currently registered filter driver events are signaled after the data is logged.

Status Codes Returned
EFI_SUCCESS Data was logged.

EFI_OUT_OF_RESOURCES Data was not logged due to lack of system resources.

Data Hub Specification Draft for Review

22 September 2003 Version 0.9

EFI_DATA_HUB_PROTOCOL.GetNextDataRecord()

Summary
Allows the system data log to be searched.

Prototype
EFI_STATUS
(EFIAPI * EFI_DATA_HUB_GET_NEXT_DATA_RECORD) (

IN EFI_DATA_HUB_PROTOCOL *This,
IN OUT UINT64 *MonotonicCount,
IN EFI_EVENT *FilterDriver, OPTIONAL
OUT EFI_DATA_RECORD_HEADER **Record
);

Parameters
This

The EFI_DATA_HUB_PROTOCOL instance.

MonotonicCount

On input, it specifies the Record to return. An input of zero means to return the first
record.

FilterDriver

If FilterDriver is not passed in a MonotonicCount of zero, it means to
return the first data record. If FilterDriver is passed in, then a
MonotonicCount of zero means to return the first data not yet read by
FilterDriver. Type EFI_EVENT is defined in CreateEvent() in the
EFI 1.10 Specification.

Record

Returns a dynamically allocated memory buffer with a data record that matches
MonotonicCount.

Description
This function gets a data record. It is used both to view the memory-based log and to get
information about which data records have been consumed by a filter driver.

An EFI_DATA_RECORD_HEADER is returned that matches the MonotonicCount.
MonotonicCount also returns the value for the next MonotonicCount or zero if no more
data records exist. If the MonotonicCount is nonzero, the data record that matches
MonotonicCount will be returned regardless of FilterDriver .

Draft for Review Code Definitions

Version 0.9 September 2003 23

If FilterDriver is NULL and the MonotonicCount is zero on input, then the first data
record in the memory log is returned. On output, MonotonicCount will contain the monotonic
count of the next data record.

If FilterDriver is valid and the MonotonicCount is zero on input, then the first data record
that has not yet been read by the FilterDriver is returned. On output, MonotonicCount
will contain the monotonic count of the next data record that matches the criteria defined by
FilterDriver.

Status Codes Returned
EFI_SUCCESS Data was returned in Record.

EFI_INVALID_PARAMETER FilterDriver was passed in but does not exist.

EFI_NOT_FOUND MonotonicCount does not match any data record in the
system. If a MonotonicCount of zero was passed in, then
no data records exist in the system.

EFI_OUT_OF_RESOURCES Record was not returned due to lack of system resources.

Data Hub Specification Draft for Review

24 September 2003 Version 0.9

EFI_DATA_HUB_PROTOCOL.RegisterFilterDriver()

Summary
Registers an event to be signaled every time a data record is logged in the system.

Prototype
typedef
EFI_STATUS
(EFIAPI * EFI_DATA_HUB_REGISTER_DATA_FILTER_DRIVER) (

IN EFI_DATA_HUB_PROTOCOL *This,
IN EFI_EVENT FilterEvent,
IN EFI_TPL FilterTpl,
IN UINT64 FilterClass
IN EFI_GUID *FilterDataRecordGuid

OPTIONAL
);

Parameters
This

The EFI_DATA_HUB_PROTOCOL instance.

FilterEvent

The EFI_EVENT to signal whenever data that matches FilterClass is logged in
the system. Type EFI_EVENT is defined in CreateEvent() in the EFI 1.10
Specification.

FilterTpl

The maximum EFI_TPL at which FilterEvent can be signaled. It is strongly
recommended that you use the lowest EFI_TPL possible. Type EFI_TPL is defined
in RaiseTPL() in the EFI 1.10 Specification.

FilterClass

FilterEvent will be signaled whenever a bit in
EFI_DATA_RECORD_HEADER.DataRecordClass is also set in
FilterClass. If FilterClass is zero, no class-based filtering will be
performed.

FilterDataRecordGuid

FilterEvent will be signaled whenever FilterDataRecordGuid matches
EFI_DATA_RECORD_HEADER.DataRecordGuid. If
FilterDataRecordGuid is NULL, then no GUID-based filtering will be
performed.

Draft for Review Code Definitions

Version 0.9 September 2003 25

Description
This function registers the data hub filter driver that is represented by FilterEvent. Only one
instance of each FilterEvent can be registered. After the FilterEvent is registered, it will
be signaled so it can sync with data records that have been recorded prior to the FilterEvent
being registered.

FilterClass and FilterDataRecordGuid can be optionally used to restrict which events
will cause FilterEvent to be signaled. FilterClass and FilterDataRecordGuid have
an “AND” relationship because each argument must be matched to signal an event.

Status Codes Returned
EFI_SUCCESS The filter driver event was registered

EFI_ALREADY_STARTED FilterEvent was previously registered and cannot be
registered again.

EFI_OUT_OF_RESOURCES The filter driver event was not registered due to lack of system
resources.

Data Hub Specification Draft for Review

26 September 2003 Version 0.9

EFI_DATA_HUB_PROTOCOL.UnregisterFilterDriver()

Summary
Stops a filter driver from being notified when data records are logged.

Prototype
EFI_STATUS
(EFIAPI * EFI_DATA_HUB_REGISTER_DATA_FILTER_DRIVER) (

IN EFI_DATA_HUB_PROTOCOL *This,
IN EFI_EVENT FilterEvent
);

Parameters
This

The EFI_DATA_HUB_PROTOCOL instance.

FilterEvent

The EFI_EVENT to remove from the list of events to be signaled every time errors
are logged. Type EFI_EVENT is defined in CreateEvent() in the EFI 1.10
Specification.

Description
This function allows a filter driver to stop being notified when data records are logged.
UnregisterFilterDriver() can be performed only on a FilterEvent that has been
previously registered with RegisterFilterDriver().

Status Codes Returned
EFI_SUCCESS The filter driver represented by FilterEvent was shut off.

EFI_NOT_FOUND FilterEvent did not exist.

	Intel® Platform Innovation Framework for EFI Data Hub Specification
	Disclaimer
	Revision History
	Contents
	1. Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2. Design Discussion
	Data Hub
	Data Hub Protocol
	Data Hub Protocol Overview
	Usage Models

	3. Code Definitions
	Introduction
	Data Record Header
	EFI_DATA_RECORD_HEADER

	Data Hub Protocol
	EFI_DATA_HUB_PROTOCOL
	EFI_DATA_HUB_PROTOCOL.LogData()
	EFI_DATA_HUB_PROTOCOL.GetNextDataRecord()
	EFI_DATA_HUB_PROTOCOL.RegisterFilterDriver()
	EFI_DATA_HUB_PROTOCOL.UnregisterFilterDriver()

