
As one of the world’s preeminent discovery platforms, Taboola, a member of
Intel® AI Builders, delivers tailored recommendations to more than a billion unique
Internet users every month to help them explore what’s interesting and new across
publisher sites, mobile apps, and other digital properties. Over the last decade,
thousands of publishers and advertisers including CBS Interactive, Euronews,
Pandora, and Samsung2 have partnered with Taboola to build audiences, increase
engagement, and drive revenue. Taboola’s proprietary deep learning algorithms,
powered by one of the largest datasets of content consumption behavior across
the open web, match people with content that they truly care about at the
moments they are most receptive to new things.

Taboola delivers content recommendations to online users using an artificial
intelligence (AI)-based solution that predicts the preferences of each visitor within
the context of each visit. A variety of data are ingested in real time for each website
visitor. The AI solution processes this data, taking into account both simple factors,
such as time of day and recently viewed content, and more complex factors, such
as context and trending topics. The accuracy of the recommendations, coupled
with the simplicity and effectiveness of the solution, has driven global success
for Taboola, and is helping some of the most innovative and highly visited digital
properties increase user engagement, monetize traffic, and acquire quality audiences.

The Power of AI
The heart of the Taboola solution is a neural network based on the open source
TensorFlow* framework that uses deep learning to infer visitor preferences. This
AI-based strategy is fundamental to meeting speed and accuracy requirements
while analyzing a variety of data for each website visitor. It also ensures that the
Taboola AI algorithms can continue to learn from new data sources and from the
way individual consumers respond to the recommendations. The self-learning
power of AI drives ongoing improvements in recommendation accuracy, without
the need for complex, hands-on programming.

Taking Performance to New Heights—on Existing Hardware
To deliver its recommendation service globally, Taboola runs seven data centers
around the world. As the company continues to expand its online footprint and
evolve the accuracy of its recommendation engine, it needs steady increases in the
power and capacity of its computing infrastructure. A recent upgrade to servers
based on the latest Intel® Xeon® Platinum 8168 processor provided a 1.49X boost
in neural network performance (for details, see the Intel Solution Brief: Taboola
Optimizes Artificial Intelligence for Smarter Content Recommendations). Given the
rapid growth in workload demands, even more performance was needed.

Achieving 2.5X1 Higher Performance for the
Taboola TensorFlow* Serving Application
through Targeted Software Optimization

Internet Discovery
Artificial Intelligence (AI)

white paper

https://builders.intel.com/ai
https://software.intel.com/en-us/articles/taboola-optimizes-artifcial-intelligence-for-smarter-content-recommendations
https://software.intel.com/en-us/articles/taboola-optimizes-artifcial-intelligence-for-smarter-content-recommendations

White Paper | Achieving 2.5X Higher Performance for the Taboola TensorFlow* Serving Application through Targeted Software Optimization

To achieve higher performance without expanding their
infrastructure footprint, Taboola engaged with Intel software
engineers to optimize their code. The software optimization
was completed in just a few weeks, resulting in a 2.5X1
improvement in performance over the original, unoptimized
code. Taboola is using those performance gains to deliver
more and better recommendations at higher speeds. With
upwards of ten thousand servers across multiple data
centers, the benefits in cost savings, efficiency, and growth
potential are substantial.

The Software Optimization Process
The Taboola AI solution uses the TensorFlow-Serving*
(TFS) framework, which is an open source deployment
service for running machine learning models in production
environments. TFS is architected on top of TensorFlow
and employs a client server workflow to deliver
recommendations. Each TFS server hosts a pretrained model
of the Taboola neural network. When the server receives a
prediction request from a client (through gRPC), it runs the
client data in a forward pass through the model and returns
the result.

To improve performance, Intel engineers optimized TFS in
three steps. Each step provided significant performance
gains (Figure 1).

Step One: Use the Intel® Math Kernel Library
for Deep Neural Networks (Intel® MKL-DNN)

Performance versus Baseline: 1.15X1

Tensor/matrix computations are used extensively in running
client data through a trained AI model. TFS commonly relies
on the open source Eigen* C++ template library to perform
these operations. Although TFS itself has been highly
optimized for Intel® architecture, Eigen has not. Intel® Math
Kernel Library for Deep Neural Networks (Intel® MKL-DNN)
provides primitives for neural network processing that are
all highly optimized for performance on the latest Intel®
microarchitecture. In the optimized test configuration, Intel
MKL-DNN primitives were used by default. For operations
that are currently not available in Intel MKL-DNN, the
optimized application falls back to Eigen.

After integrating Intel MKL-DNN, the unoptimized and
optimized versions of TFS were run on the same two-
socket server configured with Intel® Xeon® Platinum 8180
processors. The addition of the Intel MKL-DNN library
delivered 1.15X1 the performance of the unoptimized version
of TFS. The performance gains resulted primarily from faster
matrix-matrix multiplication (SGEMM) operations.

2500

2000

1500

1000

500

0

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

TensorFlow with Eigen*
(unoptimized code)

TensorFlow with
Intel® MKL-DNN

TensorFlow with Intel
MKL-DNN + 2 TFS Instances

TensorFlow with Intel
MKL-DNN + 2 TFS

Instances + Optimized
Tensor Broadcast

TensorFlow-Serving* on Intel® Xeon® Scalable Processors

Th
ro

ug
hp

ut
 (r

ec
om

m
en

da
tio

ns
/s

ec
)

Sp
ee

du
p

Throughput Speedup

Figure 1. TFS Performance Gains: Performance comparisons for the optimized versions of TFS versus the unoptimized
baseline version.

2

White Paper | Achieving 2.5X Higher Performance for the Taboola TensorFlow* Serving Application through Targeted Software Optimization

Step Two: Pin Application Threads and
Memory Requests

Performance versus Baseline: 1.3X1

A two-socket server based on the Intel Xeon Platinum 8180
processor provides 56 cores. Intel engineers have found
that hosting two instances of TFS per server and allocating
the processor and memory resources efficiently to each
instance improves performance. To accomplish this, they
pinned the application threads from each instance of TFS to
a corresponding processor socket. They also pinned memory
requests originating from each TFS instance to the associated
non-uniform memory access (NUMA) memory domain.

With this additional optimization, performance for the
optimized TFS version rose to 1.3X1 the performance of the
original, unoptimized version.

Step Three: Optimize Tensor Operations

Performance versus Baseline: 2.5X1

To take performance to the next level, Intel engineers used
Intel® VTune™ Amplifier to identify performance bottlenecks
by profiling the application during runtime. With Intel VTune
Amplifier, engineers can visualize the contribution of each
software module to the overall runtime of the application.
They can also look more closely to identify the precise lines
of source code within those modules that are impairing
performance and are good candidates for optimization.
Not surprisingly for an application called TensorFlow, the
most time-consuming operation turned out to be a tensor
operation known as broadcasting.

A tensor is an n-dimensional array of numbers. A broadcast
operation involves replicating the input tensor by a specified
factor on any given dimension (Figure 2). Performance
analysis of the Taboola TFS solution showed that a request
from a single client results in roughly 25,000 tensor
broadcast operations, which consume a large portion of the
total processing time.

Operations such as tensor broadcasting involve executing
an instruction many times across a large number of
data points. This makes them an ideal fit for the single
instruction multiple data (SIMD) capabilities that are built
into Intel® Xeon® processors through a technology called
Intel® Advanced Vector Extensions (Intel® AVX). The latest
Intel® Xeon® Scalable processors support Intel® Advanced
Vector Extensions 512 (Intel® AVX-512), which allows a single
instruction to be executed simultaneously on multiple data
elements stored in a 512-bit vector register. Optimizing
software for this strategy is known as vectorization, and can
dramatically increase performance for operations that can be
parallelized in this way.

As revealed by the Intel VTune Amplifier analysis, the Eigen
implementation of tensor broadcasting relies heavily on
scalar instructions that do not take advantage of vector
processing capabilities available in Intel Xeon Scalable
processors. The scalar instructions are used in calculating
the target index in the input tensor, which specifies
how the elements are copied to the output tensor. The
engineering team also found that the required number of
index calculations for a broadcast are excessive unless the
dimensions of the tensors are a multiple of the width of the
vector registers in the processor (vector register width is 16
for an FP32 data type on Intel Xeon Scalable processors).

The software optimization team vectorized the tensor
broadcast functions in Eigen using Intel AVX-512
instructions. As part of the optimization effort, the
engineering team created two new tensor broadcasting
member functions based on the types of input tensors
identified in Taboola’s application: (packetNByOne) and
(packetOneByN). For both types of tensors, the engineering
team was able to significantly reduce the number of
operations in a typical broadcast operation.

The following examples show how the operations are
accelerated in representative cases.

• �Broadcasting a 5x1 input tensor into a 5x16 output tensor
(Figure 3): Using unoptimized Eigen, this operation requires
80 separate scalar calculations, one calculation for each
tensor member in the output tensor. Using Intel AVX-512
instructions in the optimized version of Eigen, that same
operation can be performed using just five calculations, one
calculation for each element of the input tensor. In other
words, the optimized code reduces the number of required
calculations by a factor of 16.

• �Broadcasting a 1x20 input tensor into 5x20 output tensor
(Figure 4): This operation is more complicated because
the 20 elements of the output tensor do not fit evenly
within the 512-bit vector registers of Intel Xeon Scalable
processors (20 elements times 32 bits per element equals
640 bits). In this case, the baseline Eigen version takes
advantage of some SIMD functionality, but still relies on 52
scalar operations. The optimized code performs the same
operation without scalar operations, which significantly
reduces the total number of required calculations.

Figure 2. Example of a tensor broadcast: A 2x2 tensor is
broadcast to a 6x4 tensor by replicating the first and second
dimensions by a factor of 3 and 2, respectively.

1

1

1

1

3

3

3

1

1

1

3

3

3

Input (2,2)

Output (6,4)

Input.broadcast (3,2)

3

2

2

2

2

4

4

4

2

2

2

4

4

4

4

3

White Paper | Achieving 2.5X Higher Performance for the Taboola TensorFlow* Serving Application through Targeted Software Optimization

Figure 3. Comparison of a tensor broadcast of a 5x1 tensor (packetNByOne class) into a 5x16 tensor using unoptimized Eigen*
(upper graphic) and Intel® optimized Eigen (lower graphic). The unoptimized code requires 80 separate scalar calculations for
the broadcast operation versus just 5 operations for the optimized code.

Figure 4. Comparison of a tensor broadcast of a 1x20 input tensor (packetOneByN class) into a 5x20 output tensor using
unoptimized Eigen* (upper graphic) and using Intel® optimized Eigen (lower graphic). Although not as streamlined as the
example in Figure 3, the optimized version replaces 52 scalar operations with much more efficient SIMD operations.

Input Tensor (1x20)

Input Tensor (5x1)

Eigen* Baseline: Tensor Broadcast of input (5x1) to output (5x16)

Intel® optimized Eigen: Tensor Broadcast of input (5x1) to output (5x16)

1

3

5

2

4

1

1

Best

Better

Best

Bad

Bad

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SIMD Broadcast

SIMD Pack

SIMD Broadcast

Scalar

Scalar

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

4

4

5

5

Eigen* Baseline: Tensor Broadcast of input (1x20) to output (5x20)

Intel® optimized Eigen: Tensor Broadcast of input (1x20) to output (5x20)

1

1

1

1

1

1

1

1

1

1

1

9

9

9

9

9

9

9

9

9

9

9

5

5

5

5

5

5

5

5

5

5

5

13

13

13

13

13

13

13

13

13

13

13

3

3

3

3

3

3

3

3

3

3

3

11

11

11

11

11

11

11

11

11

11

11

7

7

7

7

7

7

7

7

7

7

7

15

15

15

15

15

15

15

15

15

15

15

17

17

17

17

17

17

17

17

17

17

17

19

19

19

19

19

19

19

19

19

19

19

2

2

2

2

2

2

2

2

2

2

2

10

10

10

10

10

10

10

10

10

10

10

6

6

6

6

6

6

6

6

6

6

6

14

14

14

14

14

14

14

14

14

14

14

4

4

4

4

4

4

4

4

4

4

4

12

12

12

12

12

12

12

12

12

12

12

8

8

8

8

8

8

8

8

8

8

8

16

16

16

16

16

16

16

16

16

16

16

18

18

18

18

18

18

18

18

18

18

18

20

20

20

20

20

20

20

20

20

20

20

4

White Paper | Achieving 2.5X Higher Performance for the Taboola TensorFlow* Serving Application through Targeted Software Optimization

Before testing the impact of improved vectorization on TFS performance, the team benchmarked Eigen tensor broadcast
independently of TFS by running Eigen on a single core of the Intel Xeon Platinum 8180 processor. For the Nx1 type of input
tensors (packetNByOne class), the speedup was 58-65X1; for the 1xN type of input tensors (packetOneByN class), the speedup
was 3-4X1 (Figure 5).

Finally, the team compared performance for the optimized
and unoptimized versions of TFS. All three optimizations
were used: 1) Intel MKL-DNN; 2) two instances of TFS with
CPU and NUMA pinning, and 3) vectorized tensor broadcast
operations. With all three enhancements, the performance
of the optimized code was 2.5X1 that of the original,
unoptimized code (Figure 1).

2500

2000

1500

1000

500

0

Size on N; Output Tensor Shape (NxNx32)
64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 1024

Inputs: NxNx1; Bcast 1x1x32

Inputs: 1xNxN; Bcast 32x1x1

Tensor Broadcast

Ti
m

e
(m

s)

Baseline Eigen (Lower is Better)
Intel Optimized Eigen

+ +
+

+
+

+
+

+
+

+
+

+

++++++++++++++++++++++++

+

++++++

+

140

120

100

80

60

40

20

0

Size on N; Output Tensor Shape (NxNx32)
64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 1024

Ti
m

e
(m

s)

Baseline Eigen (Lower is Better)
Intel Optimized Eigen

+ + + + + + + + + + + + + + + + + + + +
+

+
+

+
+

+
+

+
+

+
+

++++++++++++++++++++++++

+

++++++

+

Figure 5. Eigen* Performance Gains: Performance comparison of tensor broadcast operations with and without Intel®
optimizations (lower is better). The 58-65X1 performance gains shown in the upper graph are applicable to packetNByOne
input tensors; the 3-4X1 gains shown in the lower graph are applicable to packetOneByN input tensors.

Built-in High Performance for Future
AI Solutions
As in many Intel software optimization engagements, the
work done with Taboola offers potential value for a much
broader community. To better support emerging AI users,
Intel generalized the tensor broadcast optimizations to
support tensors of all dimensions, and then up-streamed
the code improvements to the public distribution of Eigen.
The optimized code will be included in TensorFlow-Serving
release 1.10. As a result, future Eigen and TFS users will
benefit from significantly faster tensor broadcasting when
running their applications on Intel Xeon Scalable processors,
or on the many other Intel® processors that support Intel
AVX, Intel® Advanced Vector Extensions 2 (Intel® AVX2), and
Intel AVX-512.

5

White Paper | Achieving 2.5X Higher Performance for the Taboola TensorFlow* Serving Application through Targeted Software Optimization

A Scalable Path Forward for AI Developers
Adding SIMD capabilities to software is fundamental to optimizing performance on modern processors. The techniques used
in optimizing TFS and Eigen can be applied to many other software codes and can potentially deliver major performance gains
for a wide range of applications running on Intel processor-based platforms. For commonly used neural network primitives,
AI developers can rely on Intel MKL-DNN to get the optimal performance on Intel processors. Identifying and optimizing the
most time-consuming code segments is an iterative process that offers a path toward unleashing even higher performance on
both current and future hardware platforms.

Conclusion
Taboola has achieved rapid, worldwide growth by matching individuals with brand and editorial content that’s interesting
and relevant to them across the open web. Both speed and accuracy are fundamental to the success of Taboola’s discovery
platform, and a highly optimized AI framework on Intel architecture makes it easier to achieve these goals without
overspending on hardware infrastructure.

Intel continues to deliver new hardware optimizations with each new processor generation and collaborates with both open
source communities and commercial organizations to help unleash the full performance benefits in real-world deployments.
In recent processor generations, many of these advances have targeted the heavy processing demands of AI workloads. Taking
advantage of these advances can help organizations build better AI solutions today using their existing infrastructure. It can
also help them scale their solutions more easily and cost effectively on future Intel Xeon Scalable processors.

6

	1	Performance results are based on Taboola and Intel testing as of 6 August, 2018 and may not reflect all publicly available security updates. System Configuration: Two-socket server configured
with 2 x Intel® Xeon® Platinum processor 8180 (2.50 GHz, 28 cores), 192 GB DDR4@2666MHz memory (12 x 16 GB DIMMS), 1.5 TB Intel® SSD (SC2BX01), CentOS Linux* release 7.5.1804 (Core)
(3.10.0-862.9.1.el7.x86_64); Baseline software application: TensorFlow-Serving r1.9 (https://github.com/tensorflow/serving); Intel Optimized software application: TensorFlow-Serving r1.9 +
Intel MKL-DNN (https://mirror.bazel.build/github.com/intel/mkl-dnn/archive/0c1cf54b63732e5a723c5670f66f6dfb19b64d20.tar.gz) + optimizations (availability of optimizations expected in
TensorFlow-Serving release 1.10).

	2	For these and other Taboola case studies, visit the Taboola website at https://www.taboola.com/resources/case-studies
		 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are

measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more
information go to www.intel.com/benchmarks.

		 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are
accurate. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. No computer system can be absolutely secure. Cost optimization scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances
and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction. Check with your system manufacturer or
retailer or learn more at intel.com.

		 Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice.

		 No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
		 Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any

warranty arising from course of performance, course of dealing, or usage in trade.
		 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative

to obtain the latest forecast, schedule, specifications and roadmaps.
		 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.
		 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
		 Intel, the Intel logo, VTune, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
		 *Other names and brands may be claimed as the property of others. © 2018 Intel Corporation. 1218/RA/MESH/PDF 338507-001US

