
As one of the world’s preeminent discovery platforms, Taboola, a member of 
Intel® AI Builders, delivers tailored recommendations to more than a billion unique 
Internet users every month to help them explore what’s interesting and new across 
publisher sites, mobile apps, and other digital properties. Over the last decade, 
thousands of publishers and advertisers including CBS Interactive, Euronews, 
Pandora, and Samsung2   have partnered with Taboola to build audiences, increase 
engagement, and drive revenue. Taboola’s proprietary deep learning algorithms, 
powered by one of the largest datasets of content consumption behavior across 
the open web, match people with content that they truly care about at the 
moments they are most receptive to new things.

Taboola delivers content recommendations to online users using an artificial 
intelligence (AI)-based solution that predicts the preferences of each visitor within 
the context of each visit. A variety of data are ingested in real time for each website 
visitor. The AI solution processes this data, taking into account both simple factors, 
such as time of day and recently viewed content, and more complex factors, such 
as context and trending topics.  The accuracy of the recommendations, coupled 
with the simplicity and effectiveness of the solution, has driven global success  
for Taboola, and is helping some of the most innovative and highly visited digital 
properties increase user engagement, monetize traffic, and acquire quality audiences.

The Power of AI
The heart of the Taboola solution is a neural network based on the open source 
TensorFlow* framework that uses deep learning to infer visitor preferences. This 
AI-based strategy is fundamental to meeting speed and accuracy requirements 
while analyzing a variety of data for each website visitor. It also ensures that the 
Taboola AI algorithms can continue to learn from new data sources and from the 
way individual consumers respond to the recommendations. The self-learning 
power of AI drives ongoing improvements in recommendation accuracy, without 
the need for complex, hands-on programming.

Taking Performance to New Heights—on Existing Hardware
To deliver its recommendation service globally, Taboola runs seven data centers 
around the world. As the company continues to expand its online footprint and 
evolve the accuracy of its recommendation engine, it needs steady increases in the 
power and capacity of its computing infrastructure. A recent upgrade to servers 
based on the latest Intel® Xeon® Platinum 8168 processor provided a 1.49X boost 
in neural network performance (for details, see the Intel Solution Brief: Taboola 
Optimizes Artificial Intelligence for Smarter Content Recommendations). Given the 
rapid growth in workload demands, even more performance was needed.
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To achieve higher performance without expanding their 
infrastructure footprint, Taboola engaged with Intel software 
engineers to optimize their code. The software optimization 
was completed in just a few weeks, resulting in a 2.5X1 
improvement in performance over the original, unoptimized 
code. Taboola is using those performance gains to deliver 
more and better recommendations at higher speeds. With 
upwards of ten thousand servers across multiple data 
centers, the benefits in cost savings, efficiency, and growth 
potential are substantial.

The Software Optimization Process
The Taboola AI solution uses the TensorFlow-Serving* 
(TFS) framework, which is an open source deployment 
service for running machine learning models in production 
environments. TFS is architected on top of TensorFlow 
and employs a client server workflow to deliver 
recommendations. Each TFS server hosts a pretrained model 
of the Taboola neural network. When the server receives a 
prediction request from a client (through gRPC), it runs the 
client data in a forward pass through the model and returns 
the result. 

To improve performance, Intel engineers optimized TFS in 
three steps. Each step provided significant performance 
gains (Figure 1). 

Step One: Use the Intel® Math Kernel Library 
for Deep Neural Networks (Intel® MKL-DNN)

Performance versus Baseline: 1.15X1 

Tensor/matrix computations are used extensively in running 
client data through a trained AI model. TFS commonly relies 
on the open source Eigen* C++ template library to perform 
these operations. Although TFS itself has been highly 
optimized for Intel® architecture, Eigen has not. Intel® Math 
Kernel Library for Deep Neural Networks (Intel® MKL-DNN) 
provides primitives for neural network processing that are 
all highly optimized for performance on the latest Intel® 
microarchitecture. In the optimized test configuration, Intel 
MKL-DNN primitives were used by default. For operations 
that are currently not available in Intel MKL-DNN, the 
optimized application falls back to Eigen.

After integrating Intel MKL-DNN, the unoptimized and 
optimized versions of TFS were run on the same two-
socket server configured with Intel® Xeon® Platinum 8180 
processors. The addition of the Intel MKL-DNN library 
delivered 1.15X1 the performance of the unoptimized version 
of TFS. The performance gains resulted primarily from faster 
matrix-matrix multiplication (SGEMM) operations.
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Figure 1. TFS Performance Gains: Performance comparisons for the optimized versions of TFS versus the unoptimized  
baseline version.
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Step Two: Pin Application Threads and 
Memory Requests 

Performance versus Baseline: 1.3X1

A two-socket server based on the Intel Xeon Platinum 8180 
processor provides 56 cores. Intel engineers have found 
that hosting two instances of TFS per server and allocating 
the processor and memory resources efficiently to each 
instance improves performance. To accomplish this, they 
pinned the application threads from each instance of TFS to 
a corresponding processor socket. They also pinned memory 
requests originating from each TFS instance to the associated 
non-uniform memory access (NUMA) memory domain. 

With this additional optimization, performance for the 
optimized TFS version rose to 1.3X1 the performance of the 
original, unoptimized version. 

Step Three: Optimize Tensor Operations

Performance versus Baseline: 2.5X1

To take performance to the next level, Intel engineers used 
Intel® VTune™ Amplifier to identify performance bottlenecks 
by profiling the application during runtime. With Intel VTune 
Amplifier, engineers can visualize the contribution of each 
software module to the overall runtime of the application. 
They can also look more closely to identify the precise lines 
of source code within those modules that are impairing 
performance and are good candidates for optimization. 
Not surprisingly for an application called TensorFlow, the 
most time-consuming operation turned out to be a tensor 
operation known as broadcasting. 

A tensor is an n-dimensional array of numbers. A broadcast 
operation involves replicating the input tensor by a specified 
factor on any given dimension (Figure 2). Performance 
analysis of the Taboola TFS solution showed that a request 
from a single client results in roughly 25,000 tensor 
broadcast operations, which consume a large portion of the 
total processing time. 

Operations such as tensor broadcasting involve executing 
an instruction many times across a large number of 
data points.  This makes them an ideal fit for the single 
instruction multiple data (SIMD) capabilities that are built 
into Intel® Xeon® processors through a technology called 
Intel® Advanced Vector Extensions (Intel® AVX).  The latest 
Intel® Xeon® Scalable processors support Intel® Advanced 
Vector Extensions 512 (Intel® AVX-512), which allows a single 
instruction to be executed simultaneously on multiple data 
elements stored in a 512-bit vector register. Optimizing 
software for this strategy is known as vectorization, and can 
dramatically increase performance for operations that can be 
parallelized in this way.

As revealed by the Intel VTune Amplifier analysis, the Eigen 
implementation of tensor broadcasting relies heavily on 
scalar instructions that do not take advantage of vector 
processing capabilities available in Intel Xeon Scalable 
processors. The scalar instructions are used in calculating 
the target index in the input tensor, which specifies 
how the elements are copied to the output tensor. The 
engineering team also found that the required number of 
index calculations for a broadcast are excessive unless the 
dimensions of the tensors are a multiple of the width of the 
vector registers in the processor (vector register width is 16 
for an FP32 data type on Intel Xeon Scalable processors). 

The software optimization team vectorized the tensor 
broadcast functions in Eigen using Intel AVX-512 
instructions. As part of the optimization effort, the 
engineering team created two new tensor broadcasting 
member functions based on the types of input tensors 
identified in Taboola’s application: (packetNByOne) and 
(packetOneByN). For both types of tensors, the engineering 
team was able to significantly reduce the number of 
operations in a typical broadcast operation. 

The following examples show how the operations are 
accelerated in representative cases.

• �Broadcasting a 5x1 input tensor into a 5x16 output tensor 
(Figure 3): Using unoptimized Eigen, this operation requires 
80 separate scalar calculations, one calculation for each 
tensor member in the output tensor. Using Intel AVX-512 
instructions in the optimized version of Eigen, that same 
operation can be performed using just five calculations, one 
calculation for each element of the input tensor. In other 
words, the optimized code reduces the number of required 
calculations by a factor of 16.

• �Broadcasting a 1x20 input tensor into 5x20 output tensor 
(Figure 4): This operation is more complicated because 
the 20 elements of the output tensor do not fit evenly 
within the 512-bit vector registers of Intel Xeon Scalable 
processors (20 elements times 32 bits per element equals 
640 bits).  In this case, the baseline Eigen version takes 
advantage of some SIMD functionality, but still relies on 52 
scalar operations. The optimized code performs the same 
operation without scalar operations, which significantly 
reduces the total number of required calculations.

Figure 2. Example of a tensor broadcast: A 2x2 tensor is 
broadcast to a 6x4 tensor by replicating the first and second 
dimensions by a factor of 3 and 2, respectively.
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Figure 3. Comparison of a tensor broadcast of a 5x1 tensor (packetNByOne class) into a 5x16 tensor using unoptimized Eigen* 
(upper graphic) and Intel® optimized Eigen (lower graphic). The unoptimized code requires 80 separate scalar calculations for 
the broadcast operation versus just 5 operations for the optimized code. 

Figure 4. Comparison of a tensor broadcast of a 1x20 input tensor (packetOneByN class) into a 5x20 output tensor using 
unoptimized Eigen* (upper graphic) and using Intel® optimized Eigen (lower graphic).  Although not as streamlined as the 
example in Figure 3, the optimized version replaces 52 scalar operations with much more efficient SIMD operations. 
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Before testing the impact of improved vectorization on TFS performance, the team benchmarked Eigen tensor broadcast 
independently of TFS by running Eigen on a single core of the Intel Xeon Platinum 8180 processor. For the Nx1 type of input 
tensors (packetNByOne class), the speedup was 58-65X1; for the 1xN type of input tensors (packetOneByN class), the speedup 
was 3-4X1 (Figure 5). 

Finally, the team compared performance for the optimized 
and unoptimized versions of TFS. All three optimizations 
were used: 1) Intel MKL-DNN; 2) two instances of TFS with 
CPU and NUMA pinning, and 3) vectorized tensor broadcast 
operations. With all three enhancements, the performance 
of the optimized code was 2.5X1 that of the original, 
unoptimized code (Figure 1).
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Figure 5. Eigen* Performance Gains: Performance comparison of tensor broadcast operations with and without Intel® 
optimizations (lower is better). The 58-65X1 performance gains shown in the upper graph are applicable to packetNByOne 
input tensors; the 3-4X1 gains shown in the lower graph are applicable to packetOneByN input tensors.

Built-in High Performance for Future  
AI Solutions
As in many Intel software optimization engagements, the 
work done with Taboola offers potential value for a much 
broader community. To better support emerging AI users, 
Intel generalized the tensor broadcast optimizations to 
support tensors of all dimensions, and then up-streamed 
the code improvements to the public distribution of Eigen. 
The optimized code will be included in TensorFlow-Serving 
release 1.10. As a result, future Eigen and TFS users will 
benefit from significantly faster tensor broadcasting when 
running their applications on Intel Xeon Scalable processors, 
or on the many other Intel® processors that support Intel 
AVX, Intel® Advanced Vector Extensions 2 (Intel® AVX2), and 
Intel AVX-512.
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A Scalable Path Forward for AI Developers
Adding SIMD capabilities to software is fundamental to optimizing performance on modern processors. The techniques used 
in optimizing TFS and Eigen can be applied to many other software codes and can potentially deliver major performance gains 
for a wide range of applications running on Intel processor-based platforms. For commonly used neural network primitives, 
AI developers can rely on Intel MKL-DNN to get the optimal performance on Intel processors. Identifying and optimizing the 
most time-consuming code segments is an iterative process that offers a path toward unleashing even higher performance on 
both current and future hardware platforms.

Conclusion
Taboola has achieved rapid, worldwide growth by matching individuals with brand and editorial content that’s interesting 
and relevant to them across the open web. Both speed and accuracy are fundamental to the success of Taboola’s discovery 
platform, and a highly optimized AI framework on Intel architecture makes it easier to achieve these goals without 
overspending on hardware infrastructure.

Intel continues to deliver new hardware optimizations with each new processor generation and collaborates with both open 
source communities and commercial organizations to help unleash the full performance benefits in real-world deployments. 
In recent processor generations, many of these advances have targeted the heavy processing demands of AI workloads. Taking 
advantage of these advances can help organizations build better AI solutions today using their existing infrastructure. It can 
also help them scale their solutions more easily and cost effectively on future Intel Xeon Scalable processors.
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	1	Performance results are based on Taboola and Intel testing as of 6 August, 2018 and may not reflect all publicly available security updates. System Configuration: Two-socket server configured 
with 2 x Intel® Xeon® Platinum processor 8180 (2.50 GHz, 28 cores), 192 GB DDR4@2666MHz memory (12 x 16 GB DIMMS), 1.5 TB Intel® SSD (SC2BX01), CentOS Linux* release 7.5.1804 (Core) 
(3.10.0-862.9.1.el7.x86_64); Baseline software application: TensorFlow-Serving r1.9 (https://github.com/tensorflow/serving); Intel Optimized software application: TensorFlow-Serving r1.9 + 
Intel MKL-DNN (https://mirror.bazel.build/github.com/intel/mkl-dnn/archive/0c1cf54b63732e5a723c5670f66f6dfb19b64d20.tar.gz) + optimizations (availability of optimizations expected in 
TensorFlow-Serving release 1.10).

	2	For these and other Taboola case studies, visit the Taboola website at https://www.taboola.com/resources/case-studies
		 Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are 

measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more 
information go to www.intel.com/benchmarks.

		 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are 
accurate. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system 
configuration. No computer system can be absolutely secure. Cost optimization scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances 
and configurations, may affect future costs and provide cost savings.  Circumstances will vary. Intel does not guarantee any costs or cost reduction. Check with your system manufacturer or 
retailer or learn more at intel.com.

		 Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on 
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel 
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered 
by this notice.
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		 This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your Intel representative 

to obtain the latest forecast, schedule, specifications and roadmaps.
		 The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata are available on request.
		 Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
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