
Abstract
GenomicsDB is a storage technology for genomic variants and likelihoods. Using
high-level APIs provided in C++, Java*, and Python*, users can both write and read
variant records to and from GenomicsDB shared-nothing instances in parallel
using multiple processes in a Single Process Multiple Data (SPMD) manner.
GenomicsDB uses columnar sparse arrays where samples are mapped to rows and
genome positions or sites of variants are mapped to columns. These columns are
partitioned in a shared-nothing fashion across thousands of machines, enabling
the joint genotyping workflow in Broad Institute’s genome analyzer toolkit (GATK)
to scale to 100,000 samples and beyond. This allows bioinformaticians to achieve
analysis results with high statistical confidence. The low-level storage format
enables faster and more efficient retrievals from disk compared to the use of files.
Additionally, using libraries optimized for Intel® architecture to compress data
on disk, GenomicsDB cumulatively achieves orders of magnitude improvement
in performance compared to existing tools. In addition, the generalized multi-
dimensional array model provides flexibility for GenomicsDB to be extended to
other types of genome data.

Introduction
The field of genetics has advanced remarkably since 1953, the year Watson and
Cricks first described DNA’s double helix structure (Watson, 1953). Today, high-
throughput sequencing machines provide entire human genome sequences within
a few days, with high yield and at low cost. As a result, millions of patients are
increasingly sequenced across the globe every year (CoreGenomics, 2016). Their
genome data is used in predicting the type, nature, and progression of genetic
diseases, rare diseases, diabetes, and cancer (Raheleh Rahbari, 2016) (Yuan Yuan,
2014). These advances have the potential to radically transform health care as
we know it. In the near future, genetic data in conjunction with phenotype data
will be quintessential in precision medicine (Ashley, 2016), where targeted drug
combinations will be synthesized for each individual patient.

Genetic mutations—more generally called variants—can affect a single nucleotide
or span multiple nucleotides. Variation at a single genome position can be due
either to a single nucleotide polymorphism (SNP) or single nucleotide variant
(SNV). An example of an SNP is A is replaced by T. A mutation can also span
multiple sites such as in INDELs (insertions and deletions) or structural variants
where a sequence of nucleotides are altered. The Genome Analyzer Toolkit (GATK)
is a set of tools consisting of methods and algorithms to call germline variants or
somatic mutations like SNPs or INDELs from the raw sequencing reads called out
of the sequencers (McKenna A, 2010) (DePristo, 2011) (Van der Auwera, 2013). The
GATK Best Practices Pipeline is a workflow script available from the Broad Institute.
It processes reads to call variants in two phases. The first phase, Single Sample
Variant Calling, occurs independently for each sample. It takes as input FASTQ
files produced by the sequencing machine and aligns the reads against a reference

Authors
Kushal Datta, Karthik Gururaj, Mishali

Naik, Paolo Narvaez, Ming Rutar:
Intel Health and Life Sciences

GenomicsDB: Storing Genome
Data as Sparse Columnar Arrays

Table of Contents

Abstract . . 1

Introduction . . 1

Sparse Columnar Arrays 2

GenomicsDB Architecture
and Interfaces. 3

Importing Variants to
GenomicsDB. . 4

Querying GenomicsDB. 5

Evaluation . . 5

Discussion. . 10

Acknowledgements 10

References. . 10

Appendix A – Apache Spark*
Interface. . 11

Appendix B – GenomicsDB
Utilities. . 12

Appendix C – Solving the
N+1 problem. 13

white paper

2

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

genome using a combination of heuristics and the Smith-
Waterman algorithm. The result of alignment is a sequence
alignment/map (SAM) or binary SAM (BAM) file. Reads in
BAM files are then ordered according to the kmers or single
continuous sequence of reads, and duplicates are annotated
to eliminate them from the later stages of analysis. This is
followed by a variant-calling step—for example, the GATK
Haplotype caller uses De Bruijn graph traversals and a pair-
wise HMM (Hidden Markov Model) to compute likelihoods
of variants for each sample. These variants are eventually
written in a variant call format (VCF) file (Specification, 2016).
gVCF is a derivative of the VCF format containing allelic
expressions from both reference and non-reference blocks
of the genome.

Once the variants for each sample are obtained, researchers
are typically interested in analyzing variants from many
samples jointly. Such genome-wide analysis studies (GWAS)
could be for investigating the association between variants
and specific diseases (George MF, 2016) or for boosting the
confidence of called variants by joint genotyping (Li, 2011).
All GWAS that deal with a large set of samples face a common
set of challenges:

• �Variant data is large and growing. A typical whole human
genome sample contains about three million variants that
are roughly a few hundred megabytes in size. However,
gVCF files that are used in joint genotyping are an order
of magnitude larger (a few gigabytes), as they also store
likelihoods. With more individuals being sequenced, this
data explodes quickly. A scalable system is required to store
variant data from hundreds of thousands or more samples.

• �Scalable and efficient retrievals are needed. As variant/
likelihood data grows, so does the need for computing
resources to process them. For example, joint genotyping
requires access to data from every sample in a cohort for
computing the posterior likelihoods for a given genomic
position or interval. Such tasks generate heavy demand on
data storage and retrieval systems.

• �Efficient transformations are needed. While the storage
system may use a format optimized for storage and
retrieval, tools in GWAS can expect data in specific formats.
For example, the GATK joint genotyping tool expects data
in the VCF format. Each VCF record contains data from all
the samples in the cohort and reorganized fields that are
consistent with the order of alleles in the combined VCF
record. Efficient design of data structures and mechanisms
is required so that these transformations do not
prohibitively add overhead in the analysis tools.

Further, some of the common practices widely followed by
the bioinformatics community for dealing with variant data
from multiple samples and their shortcomings are listed below.

• �Using a scalable file system or ObjectStore. Using per-
sample indexed VCF/gVCF files stored in a scalable file
system such as Lustre*, Ceph*, or Hadoop* Distributed File
System (HDFS) or object storage system such as Amazon
S3 or Google Cloud Storage does not solve the problem.
The issue is that querying a given genomic position would
open N files/objects (where N is the number of samples),
which imposes heavy demands on the system. Additionally,
the user may have to combine/transform the data from all
samples to feed into the analysis tools.

• �Creating a combined, indexed VCF/gVCF. While this
approach minimizes the number of open files/objects,
the VCF format is extremely inefficient for storing data
from many samples, primarily because it requires that
every record have data (nulls at the minimum) for every
sample in the cohort. Creating this combined file is itself a
time-consuming, memory-intensive process. In addition,
importing new samples to a cohort is equivalent to
destroying the existing file and recreating it from scratch.

• �Using a database engine. Databases are designed to share
data across multiple readers efficiently. Frameworks such
as Gemini (Umadevi Paila, 2013) and CellBase (Marta Bleda
2012) use database engines that are significantly better
than flat files. However, it is unclear whether the database
engines selected are efficient for storing and retrieving
variant data. For example, MongoDB is a flexible document
storage system, but it is unclear whether it is efficient for
retrieving variants in a cohort for a given position/interval.
Additionally, such frameworks also need to transform the
data both for import and to feed downstream analysis tools.

Our approach is to use GenomicsDB, an efficient columnar
storage manager for variants. Our key contributions in this
work are as follows:

• �A high-performance array storage manager (TileDB)
to store and query variant data from a large number of
samples efficiently on disk

• �A fast and efficient C++ library for importing large
VCF/gVCF files from many samples into TileDB

• �A fast and efficient C++ library to extract data from
TileDB and feed into genomic analysis tools such as GATK

• �An interface to Apache Spark* that allows users to process
large datasets in a distributed manner

The following sections discuss these contributions in detail.

Sparse Columnar Arrays
A VCF file is sorted by genome positions; the shaded box in
Figure 1 shows two VCF records. The first record signifies
that an insertion of an allele TA for chromosome 20 is
found at position 17960594. In the reference genome, the
site contained only the T nucleotide. The rest of the record
contains genotype, quality, and likelihood scores for the read.
The second record signifies a deletion at position 17986032,
where the allele contains only nucleotide A instead of TA
as found in the reference. While the human genome is 3.2
billion characters long, mutations such as these make up
only two to five percent of the total length. For this reason,
variant data is sparse in nature; it is stored in GenomicsDB
using a sparse two dimensional (2D) array data model.
Figure 1 includes a schematic representation of the model.
Here, rows correspond to a person or sample and columns
correspond to genome positions. The two example mutations
from above will be stored in columns (17960594 - 1) or
17960594 and (17986032 - 1) or 17986031, respectively.
The subtraction is required because positions in a VCF
file are numbered starting from 1, but column indices in
GenomicsDB are numbered starting from 0. Each cell in the
array contains multiple fields to store genotypes, alternate
alleles, and metrics such as the quality and likelihood scores
as they appear in the example VCF records. Each cell also

3

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

contains an attribute called END that signifies where the
variant terminates. A typical column-range query of the array
reports all the samples whose intervals intersect with the
given range. Similarly, for queries on samples (shown in the
shaded box in Figure 1), intervals from required positions are
returned by reading the corresponding row of the array.

To store sparse arrays, we use TileDB—a columnar storage
manager specifically designed for sparse multi-dimensional
arrays (Papadopoulos, 2016). TileDB lets users define the
data type and order of the cells of an array. Our reasoning for
using TileDB includes the following factors.

• �Variant data is sparse. TileDB is faster than HDF5 or SciDB
(other array stores) or relational SQL databases such as
Vertica* for sparse data. It can also read and write in parallel
using message passing interface (MPI and MPI-IO) libraries
in C++.

• �Variant data can be stored as a 2D array. This approach
uses rows for samples and columns for genomic positions.
Users can retrieve data by querying sub-regions (or
subarrays) by providing ranges in the global address space
on the dimensions of the array.

• �TileDB uses columnar mechanisms. It stores each
attribute of the array in a different file so that only the files
corresponding to the queried fields are traversed. This
architecture reduces the number of disk accesses relative to
row-ordered storage systems (such as PostgreSQL*).

• �Users can specify the store order of the cells in the array.
For example, they may choose to use store orders such
as row-ordered, column-ordered, or Hilbert-ordered.
The cell order is followed to store cells sequentially on
disk. GenomicsDB stores cells in column-major order. Our
expectation is that the most common type of query will
be to retrieve variant data for a cohort given a genomic
position/interval. Storing cells in column-major order
enables TileDB to quickly retrieve contiguous blocks of data
from disk.

• �TileDB enables efficient storage and retrieval. TileDB
stores and retrieves from the storage disk contiguous
sequences of cells of an array in units called tiles. In a tile,
the cells appear in the cell ordering mentioned above.
The number of cells per tile is a configurable parameter
independent of the number of samples in the cohort. Each
tile is compressed before storing, and disk offsets for all
tiles are tracked for fast retrieval during queries. Users can
tweak the number of cells per tile to match common query
patterns. For example, a user who wishes to perform a
single query over a large genomic interval might find that
using a high cell count gives best performance. A different
use case would be a system that receives a large number of
single genomic position queries—each query for a different
position of the genome. Using smaller tiles would also
prevent the system from running out of memory. Note that
using compression routines optimized for Intel architecture
in TileDB provides approximately 20 percent additional
improvement in write times compared to the un-optimized
library. Detailed experiments and results are presented in
the Evaluation section.

GenomicsDB Architecture and Interfaces

Tools such as GATK4, VariantAnnotations, SnpEff

Apache Spark* Interface: RDD
of HTSJDK Variant Context

Java* Interface: HTSJDK
Variant Context

Java Native Interface

GA4GH Server

GA4GH Variants
in Python*

Python Interface

GenomicsDB Variant Storage Manager -
C++ Layer for HTS Library Variants

TileDB Array Storage Manager

4

3

2

1
. .

 .
Sa

m
pl

es

Genome Positions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15…3200000000

Column
Query

Row
Query

Genome
Intervals

Figure 1. Variant data as a sparse 2D array.

Figure 2. The different layers in GenomicsDB software stack.

4

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

Our key design goal is to achieve scalability. In a single
node, GenomicsDB can use concurrent processes and utilize
multiple processor cores. In a distributed environment, we
scale by running multiple processes over multiple nodes
in a cluster. Figure 2 shows the logical building blocks of
GenomicsDB. TileDB is the core library, which stores the two
dimensional genome array to disk. GenomicsDB encapsulates
the TileDB arrays and provides read and write methods for
genomics data structures. TileDB and GenomicsDB core
layers are written in C++ (shown as the bottom two layers
in Figure 2). To facilitate reading and writing variants from
genome analysis tools such as GATK, we provide interfaces
in Java, Scala*, and Python. These interfaces can be used to
extract or import data from downstream genome analysis
tools such as VariantAnnotation (Valerie Obenchain,
2014) or SnpEff (Cingolani, 2012), among others. The Java
interface provides feature reader objects (shown in orange).
It connects to the underlying C++ core by means of the
Java Native Interface. Bookkeeping structures containing
input configuration values and file names are passed as
protocol buffer objects from Java to C++. Both Java and
C++ layers expose two critical methods: import and query.
The import method is invoked with a list of VCF or gVCF files
and writes the VCF records to disk. The query is invoked
with a list of genomic intervals to query and returns data
formatted as JSON variant records or as multi-sample
combined VCF records, or as VariantContext objects in Java.
A VariantContext object is a Java object that contains variant
data combined from all samples in the queried cohort at the
given genomic position/interval. The Scala API can be used
from Apache Spark for distributed computing when dealing
with a large amount of data, as described in Appendix
A. The Python API is aligned with the Global Alliance for
Genomics and Health (GA4GH, 2017) standardized interface
for genomics. Discussion of the GA4GH interface is beyond
the scope of this document; it is covered in detail in the
GenomicsDB user manual.

TileDB
Writer

TileDB
Writer

TileDB
Writer

Buffer per sample
Tile DB
Buffer

Per partition

VCF

Disk
Storage

VCF
Reader

VCF
Reader

VCF
Reader

Figure 3. Data flow in GenomicsDB import.

Importing Variants to GenomicsDB
A VCF file can contain data from one or multiple samples. The
core GenomicsDB import method as shown in Figure 3 first
parses VCF records from the input VCF files into intermediate
buffers. One or more threads can read VCF files in parallel,
shown as blue VCF reader circles in the figure. These readers
pass the VCF records to writer processes by filling entries
in the TileDB buffer. The TileDB buffer is directly passed to
the TileDB write interface, which then serializes the data as
array cells to disk. Users can control the number of parallel
readers and sizes of intermediate and TileDB buffers via
input configuration variables. Importing can also be done
in batches. For example, a cohort of 1,000 samples can be
imported in two batches containing 500 samples each.

The core import method can be used in a SPMD fashion to
parallelize writes across multiple GenomicsDB partitions. A
separate process is used to write a GenomicsDB partition, as
shown in the figure. The user needs to specify the number
of processes and the column ranges to be written to each
partition. For example, four SPMD processes can be used to
write data from positions 0-200M, 200M-400M, 400M-1.5B,
and 1.5B-3.2B to four different GenomicsDB partitions in
parallel. The processes can run on independent machines
based on the host configuration of the multi-process library
used (e.g., MPICH2 or Open MPI). Internally, GenomicsDB
creates unique row indices for each sample. Row indices
should always be coherent across all partitions. One-based
genome positions are mapped to zero-based column indices
of TileDB.

Tile size is a critical control variable in GenomicsDB import.
This determines how many contiguous bytes TileDB will
read from disk at one time. It also determines the unit
of compression—the number of bytes compressed or
decompressed together during write or read in TileDB. Too-
small tiles can cause small compression blocks, reducing

5

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

the effectiveness of the compression algorithms, as well
as excessive disk accesses even for sequential reads. On
the other hand, large tiles can cause large disk reads even
for smaller random reads. The optimal tile size depends
on the use case, query types, and system configuration;
we recommend that users perform some combinatorial
experiments to determine the optimal size for their use case.
In the case of the joint genotyping workflow in GATK, our
evaluations suggest that a few kilobytes is optimal.

Batching is a powerful technique in GenomicsDB enabled
by the fragmentation mechanism in TileDB. It allows users
to import data in smaller numbers iteratively when the
number of samples grows very large (i.e., a million or more
samples), or when new samples are added to an existing
cohort a few months after the initial array is created. For
a TileDB array, each batch is written to a new fragment.
This architecture makes adding new batches fast; update
depends only on the new batch size and not the pre-existing
data in the array. However, during query, the read algorithm
traverses all fragments and provides data in column-major
order. As the number of fragments increases, the query
performance drops. Hence, users must run a consolidate
operation at intervals to squash all fragments into one. Use
of consolidation can be controlled via input configuration. If
enabled, it is called at the end, after all fragments are written.

Partitioning in GenomicsDB helps us to achieve scalability.
GenomicsDB stores variant data in multiple partitions or
shards which may be stored in different machines. Currently,
GenomicsDB supports two partitioning strategies:

• �Row partitioning, where each partition contains a subset
of rows (or samples) but contains the data from all genomic
positions for the subset of samples

• �Column partitioning, where each partition contains a
subset of contiguous genomic positions but contains data
from all samples for the subset of columns

Column partitioning is the more widely used of these two
strategies, because it allows cohort analysis for a given
genomic interval/position to read all data off a single
partition without having to gather data from multiple
partitions that may be scattered across multiple machines.
Each partition of GenomicsDB is stored as a distinct TileDB
array.

Mapping Data is maintained in a relational database that
stores the relationships between string sample names
and 64-bit TileDB rows. Relational systems include strong
consistency mechanisms, allowing us to keep the mappings
consistent across multiple concurrent writers, avoiding
implementation of these mechanisms ourselves. The
mappings include the following:

• �The type of the various INFO, FORMAT and FILTER fields
from the VCF header

• �A combination function (median, concatenation or mean)
used while creating a combined VCF from all samples

• �The mapping between the range of 1-based genome
positions of the chromosomes to the corresponding
0-based TileDB column positions

Querying GenomicsDB
The query algorithm takes as input a list of column and row
intervals representing the samples in the cohort and the
genomic positions of interest. Each interval can be processed
in parallel. For each column interval, we first determine the
intersecting variant calls, as shown in Figure 1. However,
there can be partial matches, shown more precisely in Figure
4. Scenario (4) is the simplest, where the allele intersects
both right and left boundaries of the query column interval.
We return the intersecting portion. In the cases of both
scenario (1) and scenario (2), a left sweep from left boundary
of column interval is required to find the partial intersections.
In scenario (3), a right sweep from right boundary is required.
This implies that for each intersection of alleles, the query
method finds both end and start positions. The end position
is the END value specified in the gVCF format.

Note that the tile size has high impact on the read
performance, as explained in the “Importing Variants
to GenomicsDB” section of this document. More data is
presented in the Evaluation section, below. Interfaces to
GenomicsDB query are provided in C++, Java, and Python.
Users can print the query result to flat output files in JSON
format or in the format of a combined VCF, or they can
perform operations on that result in memory. The high-
throughput query interface for Apache Spark is described in
Appendix A.

Evaluation
The objective of our evaluation is to demonstrate our
methodology to optimize input configuration for joint
genotyping with GenomicsDB and to show how the
performance of import and query operations scales with the
number of samples. We have chosen 1,000 whole exome
sequences from the 1,000 Genome Project (Resource, 2008-
2016). To perform scale experiments, we divide the human
genome into 16 position ranges. The approach is to balance
bytes written per partition, using the methodology that is
described in detail in Appendix B. The run time of import or
query is done on 1/16th of the positions unless otherwise
identified. Thus, variants from 1/16th of the human genome
from all samples are either written or read in the experiment.

Our experimental setup includes a cluster of four
independent dual-socket servers, each based on two Intel®
Xeon® processors E5-2699 v4 @ 2.20GHz. Each server
has one rotational storage device model number WDC
WD30EZRX-00DC0B0 and one Intel® Solid State Drive (SSD)
connected by means of an Intel® C610/X99 series chipset
SATA controller. We use CentOS* 7.0 as the operating system,
Intel® OTC zlib version 1.2.8 (Adler, 2013) and TileDB version
0.3.0. In all these experiments, compression with standard
zlib is enabled unless otherwise identified.

Figure 4. Different scenarios of allele intersections with
column intervals. Longer bars signify the right and left
boundaries of the query column interval.

Right RightLeft

Allele

Right Left Left Right Left

Allele Allele Allele

(1) (2) (3) (4)

6

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

TYPE PARAMETER NAME VALUES DESCRIPTION

Import
Configuration

num_parallel_vcf_files 1:N::1 Number of concurrent VCF files readers

compress_tiledb_array True or False Enables compression

segment_size 1:N::1KB
Buffer size to store TileDB cells in a columnar fashion;
this buffer is used to both compress and serialize bits
from memory to storage via TileDB library

size_per_column_partition 1:N::1B Buffer size to store VCF records

num_cells_per_tile 1:N::1KB Number of array cells per tile in TileDB

Partitions 1:1::1 Number of partitions based on genome positions or
TileDB columns

Export
Configuration segment_size 1:N::1KB Buffer size to read TileDB cells from storage to memory

Table 1. Import configuration parameters.

The configuration parameters are listed in Table 1. The variables are grouped into import and export parameters. The second
column shows the actual parameter names in GenomicsDB, and the third column shows the possible ranges of their values
and units of increment (separated by double colon), with units B and KB indicating bytes and kilobytes, respectively. The third
column provides a short description of each parameter.

990

940

890

840

790

740

690

640

590

To
ta

l r
un

 ti
m

e
(s

ec
on

ds
)

zlib

936.34

808.83

603.61

615.47

593.46
608.86

784.64

811.54

853.49
870.8

0.1K 1K 10K 100K 1M
Number of cells per tile

IA-zlib

Figure 5. Total time to import 1/16th of 1,000 samples with different cells per tile.

Number of cells per tile determines the tile size in TileDB. It represents the cells of the array read sequentially from disk,
not the bytes read from disk. The tile size also determines the unit of compression. Therefore, too few cells in a tile will mean
fewer compressed bytes and frequent disk reads/writes. Values that are too large mean writes will compress larger buffers
at a time, but reads will fetch larger chunks from disk, which might prohibitively slow down random small queries. Figure 5
demonstrates this behavior. The difference between 1 KB and 100 KB is minimal, and values in this range result in the best
performance. Any values less than 1 KB or larger than 100 KB can prohibitively slow down writes. The orange line marked
as IA-zlib shows the same completion time with compression optimized for Intel architecture. On average, IA-zlib yields a 24
percent improvement. The TileDB paper showed that using larger numbers of cells per tile always improved performance in
synthetic benchmarks; however, when real data is read from input VCF files, we see a V-shaped curve, with 1,000 cells per tile
giving the best performance. The reason behind this performance difference will be investigated.

7

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

840

830

820

810

800

790

780

770

760

To
ta

l r
un

 ti
m

e
(s

ec
on

ds
)

803.15

788.44

816.69

828.39

10KB 100KB 1MB 10MB

Segment size in bytes

Number of parallel readers enables concurrent readers to read input files and populate intermediate buffers before they
can be written to TileDB. Even with 1,000 input VCF files, increasing this parameter has minimal effect on total import time,
because the bottleneck arises in later stages during compression.

Segment size in bytes sets the raw buffer size that TileDB uses to serialize cells to disk. When this buffer is full, compression
kicks in. It appears that when varying this size from 10 KB to 10 MB, the difference is less than five percent, as shown in Figure
6. Therefore, we recommend using a few megabytes and the default value of 10 MB for the rest of the experiments. The total
run times for different segment sizes are shown in Figure 6.

Compression level also determines the trade-off between compression ratio and time. Level 0 means no compression and
takes the least time, whereas 9 means maximum compression with maximum time requirements. Experimentation with
levels 0, 1, 6 (the default), and 9 revealed that using level 6 provides a suitable relationship between compression ratio and
time required. Comparatively, level 9 consumes significantly more processor resources without increasing the compression
ratio. Total write time for all 16 partitions and raw size on disk is shown in Figure 7. The compression ratio with IA-zlib is
approximately 10.0 for all configurations (i.e. 1/16, 2/16, 4/16, 8/16 and 16/16) with level 6.

Figure 6. Run time as found with varying segment size.

2500

2000

1500

1000

500

0

18

16

14

12

10

8

6

4

2

0

To
ta

l r
un

 ti
m

e
(s

ec
on

ds
)

 S
iz

e
on

 d
is

k
(in

 G
B

)

409.95 554.31

2150.41

568.12

0 1 6 9
Compression Level

Size (GB) Runtime

Figure 7. Run time and disk usage for different compression levels with all 16 partitions.

8

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

1650

1600

1550

1500

1450

1400

To
ta

l r
un

 ti
m

e
(s

ec
on

ds
)

100B 1KB 10K

of cells per tile

1625.95

1522.97

1490.98

2500

2000

1500

1000

500

0

1800%

1600%

1400%

1200%

1000%

800%

600%

400%

200%

0%

To
ta

l r
un

 ti
m

e
(s

ec
on

ds
)

%
 C

PU
 U

til
iz

at
io

n
1/16 2/16 4/16 8/16 16/16

of partitions in GenomicsDB

Runtime %CPU

1400.0

1200.0

1000.0

800.0

600.0

400.0

200.0

0.0

Ti
m

e
to

 im
po

rt
 (

se
co

nd
s)

1/16 2/16 4/16 8/16 16/16

zlib IA-zlib

Numbers of partitions are scaled in Figure 8. The data
is partitioned 16 ways, following the histogram shown in
Appendix B. Between each experiment, data is doubled
as indicated on the X-axis. The increasing number of
partitions on the X-axis also signifies the number of
parallel processes being doubled at every step. While in
an ideal system, the total time for each step should be the
same, this is not the case in a multi-core environment with
shared hardware and software resources. Contention for
resources such as memory bandwidth and last-level cache
adds overhead, leading to the time increase shown at each
step. Using standard zlib compression, the time to import
all 16 partitions is 1.5x greater than the time to import one
partition. In other words, 16x data was imported by scaling
to 16 simultaneous processes with a 50 percent increase
in time, which demonstrates higher scalability in the import
process. The data for the same scaling operation using
compression optimized for Intel architecture instead of
standard zlib shows that while the optimized compression
offers similar scalability to standard zlib, the optimized
compression is approximately 20 percent faster across all
runs. The compression level was set to 6 across all runs. In
addition, each data point was taken three times, as shown by
the high/low lines in the figure.

Reading data from GenomicsDB is critical to its success, as
it affects the performance of downstream genome analysis
tools. In this work, we only measure the wall-clock time of
bulk sequential reads, because that is the method used by
joint genotyping.

Number of cells per tile during query is shown in Figure 9.
It shows that for large reads, a large number of cells per tile
is conducive, and beyond 10 KB, the run times saturate. The
import times with tile sizes show similar trends. We conclude
from these relationships that values between 1 KB and 10 KB
are optimal tile sizes when reading data from GenomicsDB
during joint genotyping.

Figure 9. Read time with increasing cells per tile.

Figure 10. Read time with increasing number of partitions.

Figure 8. Comparison of import times of 1, 2, 4, 8, and 16
partitions of human genome from 1,000 samples with
standard zlib and compression libraries optimized for
Intel® architecture.

The number of partitions is doubled to show scaling of
query in Figure 10. The figure shows that processor cores
are efficiently utilized by the read algorithm, and it scales
effectively. With each successive blue column, the data size
is doubled; the corresponding orange curve shows that
utilization of processor cores doubles as well. This means
that that query time increases sub-linearly as data size is
doubled in every run. Note that we double the number of
parallel processes as the data is doubled at every step. Also,
decompression consumes a very small fraction of total
CPU time during queries. As a result, we see little difference
between decompression times using the compression library
optimized for Intel architecture compared with standard zlib.

9

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

The number of samples is increased, and both import and
query times are measured in Figure 11. The data is generated
by duplicating variants from the 1,000 genome project. This
synthetic data enables us to showcase the scalability of
GenomicsDB operations up to tens of thousands of samples.
We acknowledge that there can be exceptions with real life
datasets that are not captured by simply duplicating data.
Note that 1/16th of the human genome is imported and
read here. The column ranges are given in Appendix B. The
figure shows that by scaling the number of samples from 5K
to 40K, the import time increased nearly linearly by 8.4x. As
data increases, the compression algorithms are stressed to
a greater degree. As a result, up to 33 percent of the total
import time is spent in compression, creating the upward
trend shown in the figure. To the best of our knowledge,
however, no other data-store system matches this scalability.
The read times between 5K and 40K samples increase by
13.23x. As more and more data is read into memory, we
observe a remarkably high number of L3 cache misses, which
saturate the memory bandwidth. This is the reason the read
times increase significantly with read size. In addition, the
memory used by both write and read scales linearly with the
number of samples, as shown in Figure 12. Note that in this
experiment, only one process is used per write and read.

30

25

20

15

10

5

0

H
ou

rs

5K 10K 20K 30K 40K

of samples in GenomicsDB

9.176.74

4.46

10.14

19.24

27.66

2.21

3.99

1.09
2.09

Time to import/read 0-155M positions

Import Time Read Time

Figure 11. Scalability of GenomicsDB import and query with
number of samples.

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

M
em

or
y

U
se

d
 (G

B
)

5K 10K 20K 30K 40K

of samples

2.03

3.75

7.19

10.74

14.06

0.74

1.22

2.14

3.07

4

Import Read

Figure 12. Memory used in a single node while importing
and reading 0-155M positions from GenomicsDB for 5K, 10K,
20K, 30K, and 40K samples.

10

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

Discussion
In this paper, we have demonstrated the use of GenomicsDB as a data store for genomics likelihoods and variants. Our
evaluations show how both import and query mechanisms in GenomicsDB scale with the number of samples using multiple
processes. We also show how a compression library optimized for Intel architecture achieves a 20 percent improvement
in write performance compared to standard zlib. With this technology, we solve the scaling problem of joint genotyping
workflows in GATK with 100,000 samples and beyond. We envision that GenomicsDB can also be efficiently applied to store
other genomics data structures, such as structural variants and reads in both raw (FASTQ) format and aligned (BAM) format.
While these structures are serialized using text formats, they are processed as arrays. Therefore, we can reduce the cost of
repeated serialization and deserialization. From the standpoint of our distributed interface, we envision a service-oriented
model of GenomicsDB that provides interfaces to import, query, and move data between peer nodes dynamically and
concurrently with high efficiency. We hope to address these issues in the next generation of this technology.

Acknowledgements
This work is a joint collaboration between the Broad Institute in Cambridge, Massachusetts, Intel® Health and Life Sciences,
and Intel® Labs, in conjunction with the Intel® Science and Technology Center for Big Data at the Massachusetts Institute of
Technology.

References
Adler, J.-l. G. (2013). Intel Genome Kernel Library. Retrieved from OTC Zlib Compression Library: https://github.com/Intel-HLS/
GKL/tree/master/src/main/native/compression/otc_zlib.

Ashley, E. A. (2016). Towards precision medicine. Nat Rev Genet, 507-522.

Cingolani, P. a. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs
in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 80-92.

CoreGenomics. (2016, 05). How many genomes can the world sequence per year on X Ten? Retrieved from core-genomics.
blog-spot.com: http://core-genomics.blogspot.com/2016/05/how-many-genomes-can-world-sequence-per.html.

DePristo, M. A. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data.
Nature Genetics 43(5), 491–498.

GA4GH. (2017). GA4GH Reference Implementation. Retrieved from GA4GH-Server API: https://github.com/ga4gh/ga4gh-server.

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical
parameter estimation from sequencing data. Bioinformatics.

McKenna A, H. M. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Research, 1297–1303.

Papadopoulos, S. a. (2016). The TileDB Array Data Storage Manager. Proc. VLDB Endow., 349-360.

Raheleh Rahbari, A. W. (2016). Timing, rates and spectra of human germline mutation. Nature, 126-133.

Resource, I. G. (2008-2016). Using data from IGSR. Retrieved from IGSR: The International Genome Sample Resource:
http://www.internationalgenome.org/data/.

Specification, V. (2016, November 15). Samtools Github. Retrieved from VCF4.2: https://samtools.github.io/hts-specs/
VCFv4.2.pdf.

Umadevi Paila, B. A. (2013). GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations. PLOS
Computational Biology.

Valerie Obenchain, M. M. (2014). VariantAnnotation: a Bioconductor package for exploration and annotation of genetic
variants. Bioinformatics, 2076-2078.

Van der Auwera, G. A.-M. (2013). From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices
pipeline. Current Protocols in Bioinformatics, 11.10.1–11.10.33.

WATSON, J. D. (1953). Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 737-743.

Yuan Yuan, E. M.-M. (2014). Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nature
Biotech, 644-652.

Zaharia, M. a. (2012). Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. Proceedings
of the 9th USENIX Conference on Networked Systems Design and Implementation (pp. 2-2). Berkeley, CA: USENIX Association.

George MF et al (2016). Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurol Genet.

Marta Bleda et al (2012). CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological
information from heterogeneous sources. Nucleic Acids Res.

https://github.com/Intel-HLS/GKL/tree/master/src/main/native/compression/otc_zlib
https://github.com/Intel-HLS/GKL/tree/master/src/main/native/compression/otc_zlib
http://core-genomics.blogspot.com/2016/05/how-many-genomes-can-world-sequence-per.html
https://github.com/ga4gh/ga4gh-server
https://samtools.github.io/hts-specs/VCFv4.2.pdf
https://samtools.github.io/hts-specs/VCFv4.2.pdf

11

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

Appendix A – Apache Spark* Interface
Apache Spark is a distributed runtime environment based on a resilient distributed data structure (RDD) partitioned across
multiple nodes (Zaharia, 2012). The embarrassingly parallel operators exposed by Spark such as map filter flatMap can occur in
parallel in the nodes, whereas the combine operators such as join groupBy reduceByKey require data to be shuffled across the
partitions over the network. The mechanism of the Spark interface with GenomicsDB is shown in Figure 13. The approach is
based on the idea that shared-nothing GenomicsDB instances (separated by the green line in the figure) will contain data for
the column ranges the instance was partitioned with. Because this is a columnar partitioning scheme, data from all samples
appear in all nodes. One Spark worker is spawned for each GenomicsDB instance. Each worker reads data from its local
instance, creating an RDD of VariantContexts. Similar to Spark runtime, all operators local to an instance occur locally on the
GenomicsDB data, whereas any shuffle required during a combine operation uses Spark’s communication layer.

RDD[VariantContext]

Spark*
Worker/

GenomicsDB
Instance

Spark
Worker/

GenomicsDB
Instance

Spark
Worker/

GenomicsDB
Instance

Spark
Worker/

GenomicsDB
Instance

0-150M

1

2

3

4

5

6

150M-300M 300M-1.2B 1.2B-3.1B

Figure 13. How the Apache Spark* interface of GenomicsDB works on partitioned data.

12

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

V
C

F
re

co
rd

s
pe

r
ra

ng
e

(in
 M

ill
io

ns
)

140

120

100

80

60

40

20

0

0-
19

3.
6M

19
3.

6M
-3

87
.2

M

38
7.

2M
-5

80
.8

M

58
0.

8M
-7

74
M

74
4M

-9
67

.6
M

96
7.

6-
1.

16
B

1.
16

B
-1

.3
5B

1.
35

B
-1

.5
5B

1.
55

B
-1

.7
4B

1.
74

B
-1

.9
4B

1.
94

B
-2

.1
3B

2.
13

B
-2

.3
1B

2.
31

B
-2

.5
2B

2.
52

B
-2

.7
1B

2.
71

B
-2

.9
B

2.
9B

-3
.1

B

0-
15

5.
2M

15
5.

2M
-3

62
.8

M

36
2.

8-
60

0M

60
0M

-9
20

.8
M

92
0.

8M
-1

.1
4B

1.
14

B
-1

.3
8B

1.
38

B
-1

.7
B

1.
7B

-1
.8

2B

1.
82

B
-1

.9
7B

1.
97

B
-2

.2
2B

2.
22

B
-2

.4
1B

2.
41

B
-2

.5
1B

2.
51

B
-2

.6
3B

2.
63

B
-2

.7
B

2.
7B

-2
.8

3B

2.
83

B
-3

.1
B

Genome Position Ranges

Figure 14. Distribution of VCF records per interval.

Appendix B – GenomicsDB Utilities
In addition to import and query, the utility tools vcfdiff and vcfhistogram in GenomicsDB provide two important capabilities.
The first of these, vcfdiff, compares two VCF files, record by record. It is useful to validate combined VCF files generated from
other genome analyzer tools against the ones generated by GenomicsDB. It is also used in the continuous integration and
nightly build environment. The tool takes in tolerance level as an argument, which defines the threshold for floating-point
comparisons. The second tool, vcfhistogram, enables us to balance the VCF records imported across multiple import processes.
The distribution of alleles occurring in individuals is not uniform. Thus, when import is parallelized, it is difficult to find
the column ranges such that the each writes an approximately equal number of VCF records to GenomicsDB. For example,
dividing a VCF file into two processes loading 0-to-1.6B and 1.6B-to-3.2B respectively will not write the same number of
bytes to GenomicsDB. This non-uniform distribution creates an imbalance in computation, creating straggler processes that
significantly outrun other concurrent processes, as shown in the left chart (in blue) of Figure 14. To avoid such a scenario,
vcfhistogram can be used to find out the ranges of genomic positions with uniform distribution of VCF records as shown on the
right side (in orange) of the figure.

White Paper | GenomicsDB: Storing Genome Data as Sparse Columnar Arrays

Appendix C – Solving the N+1 problem
Table 2 highlights a key benefit that a storage system such as TileDB provides over the existing methodology of performing
joint genotyping with a multi-sample combined VCF file. With every update in a cohort, such as the addition or removal
of individuals, analysts would have to recreate the combined VCF file. As we have emphasized before, this is an expensive
operation. This is commonly referred to as the N+1 problem. In comparison, GenomicsDB handles updates gracefully by
adding another TileDB fragment. The organization and method of operation of fragments are discussed in more detail in The
TileDB Array Data Storage Manager (Papadopoulos, 2016). The table demonstrates the behavior quantitatively. To add the
whole genome sequence of an individual or sample to an existing cohort of 1,000 samples takes a few seconds. This number
does not depend on the pre-existing cohort size. Therefore, insertion time of genome from an individual will still take a few
seconds, irrespective of whether the existing cohort contains 1K, 10K, or 100K samples. The insertion time also scales linearly
with the number of new samples being added. Eliminating the need for creation of combined VCF files implies that a new batch
can be imported rapidly and that downstream analysis tools (such as joint genotyping) can begin processing immediately.

OF SAMPLES WRITTEN
INCREMENTALLY TO GENOMICSDB

TIME TO IMPORT
SAMPLES (SECONDS)

TIME TO READ ALL DATA
(SECONDS)

SIZE ON DISK

1,000 819 1355 1.6 GB

1,000+1 2 1356 1.6 GB+3.7 MB

1,000+10 8.94 1411 1.6 GB+17 MB

1,000+100 78.13 1562 1.6 GB+158 MB

1,000+1,000 788 3089 1.6 GB+1.6 GB

Table 2. How GenomicsDB solves the N+1 problem.

		 Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark* and MobileMark*, are
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

		 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.
		 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system

configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.
		 © 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
		 *Other names and brands may be claimed as the property of others.
		 Java is a registered trademark of Oracle and/or its affiliates.
		 0717/ML/MESH/PDF 336113-001US

