
Abstract
GenomicsDB is a storage technology for genomic variants and likelihoods. Using 
high-level APIs provided in C++, Java*, and Python*, users can both write and read 
variant records to and from GenomicsDB shared-nothing instances in parallel 
using multiple processes in a Single Process Multiple Data (SPMD) manner. 
GenomicsDB uses columnar sparse arrays where samples are mapped to rows and 
genome positions or sites of variants are mapped to columns. These columns are 
partitioned in a shared-nothing fashion across thousands of machines, enabling 
the joint genotyping workflow in Broad Institute’s genome analyzer toolkit (GATK) 
to scale to 100,000 samples and beyond. This allows bioinformaticians to achieve 
analysis results with high statistical confidence. The low-level storage format 
enables faster and more efficient retrievals from disk compared to the use of files. 
Additionally, using libraries optimized for Intel® architecture to compress data 
on disk, GenomicsDB cumulatively achieves orders of magnitude improvement 
in performance compared to existing tools. In addition, the generalized multi-
dimensional array model provides flexibility for GenomicsDB to be extended to 
other types of genome data.

Introduction
The field of genetics has advanced remarkably since 1953, the year Watson and 
Cricks first described DNA’s double helix structure (Watson, 1953). Today, high-
throughput sequencing machines provide entire human genome sequences within 
a few days, with high yield and at low cost. As a result, millions of patients are 
increasingly sequenced across the globe every year (CoreGenomics, 2016). Their 
genome data is used in predicting the type, nature, and progression of genetic 
diseases, rare diseases, diabetes, and cancer (Raheleh Rahbari, 2016) (Yuan Yuan, 
2014). These advances have the potential to radically transform health care as 
we know it. In the near future, genetic data in conjunction with phenotype data 
will be quintessential in precision medicine (Ashley, 2016), where targeted drug 
combinations will be synthesized for each individual patient.

Genetic mutations—more generally called variants—can affect a single nucleotide 
or span multiple nucleotides. Variation at a single genome position can be due 
either to a single nucleotide polymorphism (SNP) or single nucleotide variant 
(SNV). An example of an SNP is A is replaced by T. A mutation can also span 
multiple sites such as in INDELs (insertions and deletions) or structural variants 
where a sequence of nucleotides are altered. The Genome Analyzer Toolkit (GATK) 
is a set of tools consisting of methods and algorithms to call germline variants or 
somatic mutations like SNPs or INDELs from the raw sequencing reads called out 
of the sequencers (McKenna A, 2010) (DePristo, 2011) (Van der Auwera, 2013). The 
GATK Best Practices Pipeline is a workflow script available from the Broad Institute. 
It processes reads to call variants in two phases. The first phase, Single Sample 
Variant Calling, occurs independently for each sample. It takes as input FASTQ 
files produced by the sequencing machine and aligns the reads against a reference 
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genome using a combination of heuristics and the Smith-
Waterman algorithm. The result of alignment is a sequence 
alignment/map (SAM) or binary SAM (BAM) file. Reads in 
BAM files are then ordered according to the kmers or single 
continuous sequence of reads, and duplicates are annotated 
to eliminate them from the later stages of analysis. This is 
followed by a variant-calling step—for example, the GATK 
Haplotype caller uses De Bruijn graph traversals and a pair-
wise HMM (Hidden Markov Model) to compute likelihoods 
of variants for each sample. These variants are eventually 
written in a variant call format (VCF) file (Specification, 2016). 
gVCF is a derivative of the VCF format containing allelic 
expressions from both reference and non-reference blocks 
of the genome.

Once the variants for each sample are obtained, researchers 
are typically interested in analyzing variants from many 
samples jointly. Such genome-wide analysis studies (GWAS) 
could be for investigating the association between variants 
and specific diseases (George MF, 2016) or for boosting the 
confidence of called variants by joint genotyping (Li, 2011). 
All GWAS that deal with a large set of samples face a common 
set of challenges:

• �Variant data is large and growing. A typical whole human 
genome sample contains about three million variants that 
are roughly a few hundred megabytes in size. However, 
gVCF files that are used in joint genotyping are an order 
of magnitude larger (a few gigabytes), as they also store 
likelihoods. With more individuals being sequenced, this 
data explodes quickly. A scalable system is required to store 
variant data from hundreds of thousands or more samples.

• �Scalable and efficient retrievals are needed. As variant/
likelihood data grows, so does the need for computing 
resources to process them. For example, joint genotyping 
requires access to data from every sample in a cohort for 
computing the posterior likelihoods for a given genomic 
position or interval. Such tasks generate heavy demand on 
data storage and retrieval systems.

• �Efficient transformations are needed. While the storage 
system may use a format optimized for storage and 
retrieval, tools in GWAS can expect data in specific formats. 
For example, the GATK joint genotyping tool expects data 
in the VCF format. Each VCF record contains data from all 
the samples in the cohort and reorganized fields that are 
consistent with the order of alleles in the combined VCF 
record. Efficient design of data structures and mechanisms 
is required so that these transformations do not 
prohibitively add overhead in the analysis tools.

Further, some of the common practices widely followed by 
the bioinformatics community for dealing with variant data 
from multiple samples and their shortcomings are listed below.

• �Using a scalable file system or ObjectStore. Using per-
sample indexed VCF/gVCF files stored in a scalable file 
system such as Lustre*, Ceph*, or Hadoop* Distributed File 
System (HDFS) or object storage system such as Amazon 
S3 or Google Cloud Storage does not solve the problem. 
The issue is that querying a given genomic position would 
open N files/objects (where N is the number of samples), 
which imposes heavy demands on the system. Additionally, 
the user may have to combine/transform the data from all 
samples to feed into the analysis tools.

• �Creating a combined, indexed VCF/gVCF. While this 
approach minimizes the number of open files/objects, 
the VCF format is extremely inefficient for storing data 
from many samples, primarily because it requires that 
every record have data (nulls at the minimum) for every 
sample in the cohort. Creating this combined file is itself a 
time-consuming, memory-intensive process. In addition, 
importing new samples to a cohort is equivalent to 
destroying the existing file and recreating it from scratch.

• �Using a database engine. Databases are designed to share 
data across multiple readers efficiently. Frameworks such 
as Gemini (Umadevi Paila, 2013) and CellBase (Marta Bleda 
2012) use database engines that are significantly better 
than flat files. However, it is unclear whether the database 
engines selected are efficient for storing and retrieving 
variant data. For example, MongoDB is a flexible document 
storage system, but it is unclear whether it is efficient for 
retrieving variants in a cohort for a given position/interval. 
Additionally, such frameworks also need to transform the 
data both for import and to feed downstream analysis tools.

Our approach is to use GenomicsDB, an efficient columnar 
storage manager for variants. Our key contributions in this 
work are as follows:

• �A high-performance array storage manager (TileDB) 
to store and query variant data from a large number of 
samples efficiently on disk

• �A fast and efficient C++ library for importing large  
VCF/gVCF files from many samples into TileDB

• �A fast and efficient C++ library to extract data from  
TileDB and feed into genomic analysis tools such as GATK

• �An interface to Apache Spark* that allows users to process 
large datasets in a distributed manner

The following sections discuss these contributions in detail.

Sparse Columnar Arrays
A VCF file is sorted by genome positions; the shaded box in 
Figure 1 shows two VCF records. The first record signifies 
that an insertion of an allele TA for chromosome 20 is 
found at position 17960594. In the reference genome, the 
site contained only the T nucleotide. The rest of the record 
contains genotype, quality, and likelihood scores for the read. 
The second record signifies a deletion at position 17986032, 
where the allele contains only nucleotide A instead of TA 
as found in the reference. While the human genome is 3.2 
billion characters long, mutations such as these make up 
only two to five percent of the total length. For this reason, 
variant data is sparse in nature; it is stored in GenomicsDB 
using a sparse two dimensional (2D) array data model. 
Figure 1 includes a schematic representation of the model. 
Here, rows correspond to a person or sample and columns 
correspond to genome positions. The two example mutations 
from above will be stored in columns (17960594 - 1) or 
17960594 and (17986032 - 1) or 17986031, respectively. 
The subtraction is required because positions in a VCF 
file are numbered starting from 1, but column indices in 
GenomicsDB are numbered starting from 0. Each cell in the 
array contains multiple fields to store genotypes, alternate 
alleles, and metrics such as the quality and likelihood scores 
as they appear in the example VCF records. Each cell also 
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contains an attribute called END that signifies where the 
variant terminates. A typical column-range query of the array 
reports all the samples whose intervals intersect with the 
given range. Similarly, for queries on samples (shown in the 
shaded box in Figure 1), intervals from required positions are 
returned by reading the corresponding row of the array. 

To store sparse arrays, we use TileDB—a columnar storage 
manager specifically designed for sparse multi-dimensional 
arrays (Papadopoulos, 2016). TileDB lets users define the 
data type and order of the cells of an array. Our reasoning for 
using TileDB includes the following factors.

• �Variant data is sparse. TileDB is faster than HDF5 or SciDB 
(other array stores) or relational SQL databases such as 
Vertica* for sparse data. It can also read and write in parallel 
using message passing interface (MPI and MPI-IO) libraries 
in C++.

• �Variant data can be stored as a 2D array. This approach 
uses rows for samples and columns for genomic positions. 
Users can retrieve data by querying sub-regions (or 
subarrays) by providing ranges in the global address space 
on the dimensions of the array.

• �TileDB uses columnar mechanisms. It stores each 
attribute of the array in a different file so that only the files 
corresponding to the queried fields are traversed. This 
architecture reduces the number of disk accesses relative to 
row-ordered storage systems (such as PostgreSQL*).

• �Users can specify the store order of the cells in the array. 
For example, they may choose to use store orders such 
as row-ordered, column-ordered, or Hilbert-ordered. 
The cell order is followed to store cells sequentially on 
disk. GenomicsDB stores cells in column-major order. Our 
expectation is that the most common type of query will 
be to retrieve variant data for a cohort given a genomic 
position/interval. Storing cells in column-major order 
enables TileDB to quickly retrieve contiguous blocks of data 
from disk.

• �TileDB enables efficient storage and retrieval. TileDB 
stores and retrieves from the storage disk contiguous 
sequences of cells of an array in units called tiles. In a tile, 
the cells appear in the cell ordering mentioned above. 
The number of cells per tile is a configurable parameter 
independent of the number of samples in the cohort. Each 
tile is compressed before storing, and disk offsets for all 
tiles are tracked for fast retrieval during queries. Users can 
tweak the number of cells per tile to match common query 
patterns. For example, a user who wishes to perform a 
single query over a large genomic interval might find that 
using a high cell count gives best performance. A different 
use case would be a system that receives a large number of 
single genomic position queries—each query for a different 
position of the genome. Using smaller tiles would also 
prevent the system from running out of memory. Note that 
using compression routines optimized for Intel architecture 
in TileDB provides approximately 20 percent additional 
improvement in write times compared to the un-optimized 
library. Detailed experiments and results are presented in 
the Evaluation section.

GenomicsDB Architecture and Interfaces

Tools such as GATK4, VariantAnnotations, SnpEff

Apache Spark* Interface: RDD 
of HTSJDK Variant Context

Java* Interface: HTSJDK 
Variant Context

Java Native Interface
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GA4GH Variants
in Python*
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Figure 1. Variant data as a sparse 2D array.

Figure 2. The different layers in GenomicsDB software stack.
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Our key design goal is to achieve scalability. In a single 
node, GenomicsDB can use concurrent processes and utilize 
multiple processor cores. In a distributed environment, we 
scale by running multiple processes over multiple nodes 
in a cluster. Figure 2 shows the logical building blocks of 
GenomicsDB. TileDB is the core library, which stores the two 
dimensional genome array to disk. GenomicsDB encapsulates 
the TileDB arrays and provides read and write methods for 
genomics data structures. TileDB and GenomicsDB core 
layers are written in C++ (shown as the bottom two layers 
in Figure 2). To facilitate reading and writing variants from 
genome analysis tools such as GATK, we provide interfaces 
in Java, Scala*, and Python. These interfaces can be used to 
extract or import data from downstream genome analysis 
tools such as VariantAnnotation (Valerie Obenchain, 
2014) or SnpEff (Cingolani, 2012), among others. The Java 
interface provides feature reader objects (shown in orange). 
It connects to the underlying C++ core by means of the 
Java Native Interface. Bookkeeping structures containing 
input configuration values and file names are passed as 
protocol buffer objects from Java to C++. Both Java and 
C++ layers expose two critical methods: import and query. 
The import method is invoked with a list of VCF or gVCF files 
and writes the VCF records to disk. The query is invoked 
with a list of genomic intervals to query and returns data 
formatted as JSON variant records or as multi-sample 
combined VCF records, or as VariantContext objects in Java. 
A VariantContext object is a Java object that contains variant 
data combined from all samples in the queried cohort at the 
given genomic position/interval. The Scala API can be used 
from Apache Spark for distributed computing when dealing 
with a large amount of data, as described in Appendix 
A. The Python API is aligned with the Global Alliance for 
Genomics and Health (GA4GH, 2017) standardized interface 
for genomics. Discussion of the GA4GH interface is beyond 
the scope of this document; it is covered in detail in the 
GenomicsDB user manual.

TileDB
Writer

TileDB
Writer

TileDB
Writer

Buffer per sample
Tile DB
Buffer

Per partition

VCF

Disk
Storage

VCF
Reader

VCF
Reader

VCF
Reader

Figure 3. Data flow in GenomicsDB import.

Importing Variants to GenomicsDB
A VCF file can contain data from one or multiple samples. The 
core GenomicsDB import method as shown in Figure 3 first 
parses VCF records from the input VCF files into intermediate 
buffers. One or more threads can read VCF files in parallel, 
shown as blue VCF reader circles in the figure. These readers 
pass the VCF records to writer processes by filling entries 
in the TileDB buffer. The TileDB buffer is directly passed to 
the TileDB write interface, which then serializes the data as 
array cells to disk. Users can control the number of parallel 
readers and sizes of intermediate and TileDB buffers via 
input configuration variables. Importing can also be done 
in batches. For example, a cohort of 1,000 samples can be 
imported in two batches containing 500 samples each.

The core import method can be used in a SPMD fashion to 
parallelize writes across multiple GenomicsDB partitions. A 
separate process is used to write a GenomicsDB partition, as 
shown in the figure. The user needs to specify the number 
of processes and the column ranges to be written to each 
partition. For example, four SPMD processes can be used to 
write data from positions 0-200M, 200M-400M, 400M-1.5B, 
and 1.5B-3.2B to four different GenomicsDB partitions in 
parallel. The processes can run on independent machines 
based on the host configuration of the multi-process library 
used (e.g., MPICH2 or Open MPI). Internally, GenomicsDB 
creates unique row indices for each sample. Row indices 
should always be coherent across all partitions. One-based 
genome positions are mapped to zero-based column indices 
of TileDB.

Tile size is a critical control variable in GenomicsDB import. 
This determines how many contiguous bytes TileDB will 
read from disk at one time. It also determines the unit 
of compression—the number of bytes compressed or 
decompressed together during write or read in TileDB. Too-
small tiles can cause small compression blocks, reducing 
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the effectiveness of the compression algorithms, as well 
as excessive disk accesses even for sequential reads. On 
the other hand, large tiles can cause large disk reads even 
for smaller random reads. The optimal tile size depends 
on the use case, query types, and system configuration; 
we recommend that users perform some combinatorial 
experiments to determine the optimal size for their use case. 
In the case of the joint genotyping workflow in GATK, our 
evaluations suggest that a few kilobytes is optimal.

Batching is a powerful technique in GenomicsDB enabled 
by the fragmentation mechanism in TileDB. It allows users 
to import data in smaller numbers iteratively when the 
number of samples grows very large (i.e., a million or more 
samples), or when new samples are added to an existing 
cohort a few months after the initial array is created. For 
a TileDB array, each batch is written to a new fragment. 
This architecture makes adding new batches fast; update 
depends only on the new batch size and not the pre-existing 
data in the array. However, during query, the read algorithm 
traverses all fragments and provides data in column-major 
order. As the number of fragments increases, the query 
performance drops. Hence, users must run a consolidate 
operation at intervals to squash all fragments into one. Use 
of consolidation can be controlled via input configuration. If 
enabled, it is called at the end, after all fragments are written.

Partitioning in GenomicsDB helps us to achieve scalability. 
GenomicsDB stores variant data in multiple partitions or 
shards which may be stored in different machines. Currently, 
GenomicsDB supports two partitioning strategies:

• �Row partitioning, where each partition contains a subset 
of rows (or samples) but contains the data from all genomic 
positions for the subset of samples

• �Column partitioning, where each partition contains a 
subset of contiguous genomic positions but contains data 
from all samples for the subset of columns

Column partitioning is the more widely used of these two 
strategies, because it allows cohort analysis for a given 
genomic interval/position to read all data off a single 
partition without having to gather data from multiple 
partitions that may be scattered across multiple machines. 
Each partition of GenomicsDB is stored as a distinct TileDB 
array.

Mapping Data is maintained in a relational database that 
stores the relationships between string sample names 
and 64-bit TileDB rows. Relational systems include strong 
consistency mechanisms, allowing us to keep the mappings 
consistent across multiple concurrent writers, avoiding 
implementation of these mechanisms ourselves. The 
mappings include the following:

• �The type of the various INFO, FORMAT and FILTER fields 
from the VCF header

• �A combination function (median, concatenation or mean) 
used while creating a combined VCF from all samples

• �The mapping between the range of 1-based genome 
positions of the chromosomes to the corresponding 
0-based TileDB column positions

Querying GenomicsDB
The query algorithm takes as input a list of column and row 
intervals representing the samples in the cohort and the 
genomic positions of interest. Each interval can be processed 
in parallel. For each column interval, we first determine the 
intersecting variant calls, as shown in Figure 1. However, 
there can be partial matches, shown more precisely in Figure 
4. Scenario (4) is the simplest, where the allele intersects 
both right and left boundaries of the query column interval. 
We return the intersecting portion. In the cases of both 
scenario (1) and scenario (2), a left sweep from left boundary 
of column interval is required to find the partial intersections. 
In scenario (3), a right sweep from right boundary is required. 
This implies that for each intersection of alleles, the query 
method finds both end and start positions. The end position 
is the END value specified in the gVCF format.

Note that the tile size has high impact on the read 
performance, as explained in the “Importing Variants 
to GenomicsDB” section of this document. More data is 
presented in the Evaluation section, below. Interfaces to 
GenomicsDB query are provided in C++, Java, and Python. 
Users can print the query result to flat output files in JSON 
format or in the format of a combined VCF, or they can 
perform operations on that result in memory. The high-
throughput query interface for Apache Spark is described in 
Appendix A.

Evaluation
The objective of our evaluation is to demonstrate our 
methodology to optimize input configuration for joint 
genotyping with GenomicsDB and to show how the 
performance of import and query operations scales with the 
number of samples. We have chosen 1,000 whole exome 
sequences from the 1,000 Genome Project (Resource, 2008-
2016). To perform scale experiments, we divide the human 
genome into 16 position ranges. The approach is to balance 
bytes written per partition, using the methodology that is 
described in detail in Appendix B. The run time of import or 
query is done on 1/16th of the positions unless otherwise 
identified. Thus, variants from 1/16th of the human genome 
from all samples are either written or read in the experiment.

Our experimental setup includes a cluster of four 
independent dual-socket servers, each based on two Intel® 
Xeon® processors E5-2699 v4 @ 2.20GHz. Each server 
has one rotational storage device model number WDC 
WD30EZRX-00DC0B0 and one Intel® Solid State Drive (SSD) 
connected by means of an Intel® C610/X99 series chipset 
SATA controller. We use CentOS* 7.0 as the operating system, 
Intel® OTC zlib version 1.2.8 (Adler, 2013) and TileDB version 
0.3.0. In all these experiments, compression with standard 
zlib is enabled unless otherwise identified.

Figure 4. Different scenarios of allele intersections with 
column intervals. Longer bars signify the right and left 
boundaries of the query column interval.

Right RightLeft

Allele

Right Left Left Right Left

Allele Allele Allele
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TYPE PARAMETER NAME VALUES DESCRIPTION

Import 
Configuration

num_parallel_vcf_files 1:N::1 Number of concurrent VCF files readers

compress_tiledb_array True or False Enables compression

segment_size 1:N::1KB
Buffer size to store TileDB cells in a columnar fashion; 
this buffer is used to both compress and serialize bits 
from memory to storage via TileDB library

size_per_column_partition 1:N::1B Buffer size to store VCF records

num_cells_per_tile 1:N::1KB Number of array cells per tile in TileDB

Partitions 1:1::1 Number of partitions based on genome positions or 
TileDB columns

Export 
Configuration segment_size 1:N::1KB Buffer size to read TileDB cells from storage to memory

Table 1. Import configuration parameters.

The configuration parameters are listed in Table 1. The variables are grouped into import and export parameters. The second 
column shows the actual parameter names in GenomicsDB, and the third column shows the possible ranges of their values 
and units of increment (separated by double colon), with units B and KB indicating bytes and kilobytes, respectively. The third 
column provides a short description of each parameter.
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Figure 5. Total time to import 1/16th of 1,000 samples with different cells per tile.

Number of cells per tile determines the tile size in TileDB. It represents the cells of the array read sequentially from disk, 
not the bytes read from disk. The tile size also determines the unit of compression. Therefore, too few cells in a tile will mean 
fewer compressed bytes and frequent disk reads/writes. Values that are too large mean writes will compress larger buffers 
at a time, but reads will fetch larger chunks from disk, which might prohibitively slow down random small queries. Figure 5 
demonstrates this behavior. The difference between 1 KB and 100 KB is minimal, and values in this range result in the best 
performance. Any values less than 1 KB or larger than 100 KB can prohibitively slow down writes. The orange line marked 
as IA-zlib shows the same completion time with compression optimized for Intel architecture. On average, IA-zlib yields a 24 
percent improvement. The TileDB paper showed that using larger numbers of cells per tile always improved performance in 
synthetic benchmarks; however, when real data is read from input VCF files, we see a V-shaped curve, with 1,000 cells per tile 
giving the best performance. The reason behind this performance difference will be investigated.
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Number of parallel readers enables concurrent readers to read input files and populate intermediate buffers before they 
can be written to TileDB. Even with 1,000 input VCF files, increasing this parameter has minimal effect on total import time, 
because the bottleneck arises in later stages during compression.

Segment size in bytes sets the raw buffer size that TileDB uses to serialize cells to disk. When this buffer is full, compression 
kicks in. It appears that when varying this size from 10 KB to 10 MB, the difference is less than five percent, as shown in Figure 
6. Therefore, we recommend using a few megabytes and the default value of 10 MB for the rest of the experiments. The total 
run times for different segment sizes are shown in Figure 6.

Compression level also determines the trade-off between compression ratio and time. Level 0 means no compression and 
takes the least time, whereas 9 means maximum compression with maximum time requirements. Experimentation with 
levels 0, 1, 6 (the default), and 9 revealed that using level 6 provides a suitable relationship between compression ratio and 
time required. Comparatively, level 9 consumes significantly more processor resources without increasing the compression 
ratio. Total write time for all 16 partitions and raw size on disk is shown in Figure 7. The compression ratio with IA-zlib is 
approximately 10.0 for all configurations (i.e. 1/16, 2/16, 4/16, 8/16 and 16/16) with level 6.

Figure 6. Run time as found with varying segment size.
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Numbers of partitions are scaled in Figure 8. The data 
is partitioned 16 ways, following the histogram shown in 
Appendix B. Between each experiment, data is doubled 
as indicated on the X-axis. The increasing number of 
partitions on the X-axis also signifies the number of 
parallel processes being doubled at every step. While in 
an ideal system, the total time for each step should be the 
same, this is not the case in a multi-core environment with 
shared hardware and software resources. Contention for 
resources such as memory bandwidth and last-level cache 
adds overhead, leading to the time increase shown at each 
step. Using standard zlib compression, the time to import 
all 16 partitions is 1.5x greater than the time to import one 
partition. In other words, 16x data was imported by scaling 
to 16 simultaneous processes with a 50 percent increase 
in time, which demonstrates higher scalability in the import 
process. The data for the same scaling operation using 
compression optimized for Intel architecture instead of 
standard zlib shows that while the optimized compression 
offers similar scalability to standard zlib, the optimized 
compression is approximately 20 percent faster across all 
runs. The compression level was set to 6 across all runs. In 
addition, each data point was taken three times, as shown by 
the high/low lines in the figure.

Reading data from GenomicsDB is critical to its success, as 
it affects the performance of downstream genome analysis 
tools. In this work, we only measure the wall-clock time of 
bulk sequential reads, because that is the method used by 
joint genotyping.

Number of cells per tile during query is shown in Figure 9. 
It shows that for large reads, a large number of cells per tile 
is conducive, and beyond 10 KB, the run times saturate. The 
import times with tile sizes show similar trends. We conclude 
from these relationships that values between 1 KB and 10 KB 
are optimal tile sizes when reading data from GenomicsDB 
during joint genotyping.

Figure 9. Read time with increasing cells per tile.

Figure 10. Read time with increasing number of partitions.

Figure 8. Comparison of import times of 1, 2, 4, 8, and 16 
partitions of human genome from 1,000 samples with 
standard zlib and compression libraries optimized for  
Intel® architecture.

The number of partitions is doubled to show scaling of 
query in Figure 10. The figure shows that processor cores 
are efficiently utilized by the read algorithm, and it scales 
effectively. With each successive blue column, the data size 
is doubled; the corresponding orange curve shows that 
utilization of processor cores doubles as well. This means 
that that query time increases sub-linearly as data size is 
doubled in every run. Note that we double the number of 
parallel processes as the data is doubled at every step. Also, 
decompression consumes a very small fraction of total 
CPU time during queries. As a result, we see little difference 
between decompression times using the compression library 
optimized for Intel architecture compared with standard zlib.
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The number of samples is increased, and both import and 
query times are measured in Figure 11. The data is generated 
by duplicating variants from the 1,000 genome project. This 
synthetic data enables us to showcase the scalability of 
GenomicsDB operations up to tens of thousands of samples. 
We acknowledge that there can be exceptions with real life 
datasets that are not captured by simply duplicating data. 
Note that 1/16th of the human genome is imported and 
read here. The column ranges are given in Appendix B. The 
figure shows that by scaling the number of samples from 5K 
to 40K, the import time increased nearly linearly by 8.4x. As 
data increases, the compression algorithms are stressed to 
a greater degree. As a result, up to 33 percent of the total 
import time is spent in compression, creating the upward 
trend shown in the figure. To the best of our knowledge, 
however, no other data-store system matches this scalability. 
The read times between 5K and 40K samples increase by 
13.23x. As more and more data is read into memory, we 
observe a remarkably high number of L3 cache misses, which 
saturate the memory bandwidth. This is the reason the read 
times increase significantly with read size. In addition, the 
memory used by both write and read scales linearly with the 
number of samples, as shown in Figure 12. Note that in this 
experiment, only one process is used per write and read.
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Figure 11. Scalability of GenomicsDB import and query with 
number of samples.
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Discussion
In this paper, we have demonstrated the use of GenomicsDB as a data store for genomics likelihoods and variants. Our 
evaluations show how both import and query mechanisms in GenomicsDB scale with the number of samples using multiple 
processes. We also show how a compression library optimized for Intel architecture achieves a 20 percent improvement 
in write performance compared to standard zlib. With this technology, we solve the scaling problem of joint genotyping 
workflows in GATK with 100,000 samples and beyond. We envision that GenomicsDB can also be efficiently applied to store 
other genomics data structures, such as structural variants and reads in both raw (FASTQ) format and aligned (BAM) format. 
While these structures are serialized using text formats, they are processed as arrays. Therefore, we can reduce the cost of 
repeated serialization and deserialization. From the standpoint of our distributed interface, we envision a service-oriented 
model of GenomicsDB that provides interfaces to import, query, and move data between peer nodes dynamically and 
concurrently with high efficiency. We hope to address these issues in the next generation of this technology.
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Appendix A – Apache Spark* Interface
Apache Spark is a distributed runtime environment based on a resilient distributed data structure (RDD) partitioned across 
multiple nodes (Zaharia, 2012). The embarrassingly parallel operators exposed by Spark such as map filter flatMap can occur in 
parallel in the nodes, whereas the combine operators such as join groupBy reduceByKey require data to be shuffled across the 
partitions over the network. The mechanism of the Spark interface with GenomicsDB is shown in Figure 13. The approach is 
based on the idea that shared-nothing GenomicsDB instances (separated by the green line in the figure) will contain data for 
the column ranges the instance was partitioned with. Because this is a columnar partitioning scheme, data from all samples 
appear in all nodes. One Spark worker is spawned for each GenomicsDB instance. Each worker reads data from its local 
instance, creating an RDD of VariantContexts. Similar to Spark runtime, all operators local to an instance occur locally on the 
GenomicsDB data, whereas any shuffle required during a combine operation uses Spark’s communication layer.

RDD[VariantContext]

Spark*
Worker/

GenomicsDB
Instance

Spark
Worker/

GenomicsDB
Instance

Spark
Worker/

GenomicsDB
Instance

Spark
Worker/

GenomicsDB
Instance

0-150M

1
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4

5

6

150M-300M 300M-1.2B 1.2B-3.1B

Figure 13. How the Apache Spark* interface of GenomicsDB works on partitioned data.
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Figure 14. Distribution of VCF records per interval.

Appendix B – GenomicsDB Utilities
In addition to import and query, the utility tools vcfdiff and vcfhistogram in GenomicsDB provide two important capabilities. 
The first of these, vcfdiff, compares two VCF files, record by record. It is useful to validate combined VCF files generated from 
other genome analyzer tools against the ones generated by GenomicsDB. It is also used in the continuous integration and 
nightly build environment. The tool takes in tolerance level as an argument, which defines the threshold for floating-point 
comparisons. The second tool, vcfhistogram, enables us to balance the VCF records imported across multiple import processes. 
The distribution of alleles occurring in individuals is not uniform. Thus, when import is parallelized, it is difficult to find 
the column ranges such that the each writes an approximately equal number of VCF records to GenomicsDB. For example, 
dividing a VCF file into two processes loading 0-to-1.6B and 1.6B-to-3.2B respectively will not write the same number of 
bytes to GenomicsDB. This non-uniform distribution creates an imbalance in computation, creating straggler processes that 
significantly outrun other concurrent processes, as shown in the left chart (in blue) of Figure 14. To avoid such a scenario, 
vcfhistogram can be used to find out the ranges of genomic positions with uniform distribution of VCF records as shown on the 
right side (in orange) of the figure.
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Appendix C – Solving the N+1 problem
Table 2 highlights a key benefit that a storage system such as TileDB provides over the existing methodology of performing 
joint genotyping with a multi-sample combined VCF file. With every update in a cohort, such as the addition or removal 
of individuals, analysts would have to recreate the combined VCF file. As we have emphasized before, this is an expensive 
operation. This is commonly referred to as the N+1 problem. In comparison, GenomicsDB handles updates gracefully by 
adding another TileDB fragment. The organization and method of operation of fragments are discussed in more detail in The 
TileDB Array Data Storage Manager (Papadopoulos, 2016). The table demonstrates the behavior quantitatively. To add the 
whole genome sequence of an individual or sample to an existing cohort of 1,000 samples takes a few seconds. This number 
does not depend on the pre-existing cohort size. Therefore, insertion time of genome from an individual will still take a few 
seconds, irrespective of whether the existing cohort contains 1K, 10K, or 100K samples. The insertion time also scales linearly 
with the number of new samples being added. Eliminating the need for creation of combined VCF files implies that a new batch 
can be imported rapidly and that downstream analysis tools (such as joint genotyping) can begin processing immediately.

# OF SAMPLES WRITTEN 
INCREMENTALLY TO GENOMICSDB

TIME TO IMPORT 
SAMPLES (SECONDS)

TIME TO READ ALL DATA 
(SECONDS)

SIZE ON DISK

1,000 819 1355 1.6 GB

1,000+1 2 1356 1.6 GB+3.7 MB

1,000+10 8.94 1411 1.6 GB+17 MB

1,000+100 78.13 1562 1.6 GB+158 MB

1,000+1,000 788 3089 1.6 GB+1.6 GB

Table 2. How GenomicsDB solves the N+1 problem.

		 Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark* and MobileMark*, are 
measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

		 Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.
		 Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system 

configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at www.intel.com.
		 © 2017 Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
		 *Other names and brands may be claimed as the property of others.
		 Java is a registered trademark of Oracle and/or its affiliates.
		 0717/ML/MESH/PDF 336113-001US




