
White Paper

Table of Contents

Introduction . 1

Industry Grapples with Memory
Challenges . 1

Addressing Memory Challenges with
Intel Agilex 7 FPGAs M-Series 2

 The Memory Hierarchy .2

 On-Chip Memory .2

 In-Package Memory (HBM2e) 2

	 Off-Chip	Memory	
 (DDR5, LPDDR5, etc .) . 3

 Massive I/O Capacity . 3

 Extreme DSP Capability . 3

 Network-on-Chip (NoC) Functions 3

 Horizontal and Vertical Networks 3

Use Cases . 4

5G RF Analog Hardware-in-the-Loop
Testing . 4

The Shallow Water Model 5

 Data Flows . 5

 Memory Requirements . 6

 Implementation . 6

Conclusion .7

Authors

Supriya Velagapudi
Memory IP Product Marketing Manager

Intel Programmable Solutions Group

Mark Honman
FPGA IP SW Design Engineer

Intel Programmable Solutions Group

FPGA
Memory Bandwidth, HBM

Addressing Memory-Bandwidth and
Compute-Intensive Challenges with
Intel Agilex® 7 FPGAs M-Series

FPGAs are taking on an increasingly important role in modern applications from the
data center to the network to the edge. Their flexibility, power efficiency, massively
parallel architecture, and huge input/output (I/O) bandwidth make FPGAs attractive
for accelerating a wide range of tasks from high-performance computing (HPC) to
artificial intelligence (AI) to storage and networking. Many of these applications put
enormous demands on memory, including capacity, bandwidth, latency, and power
efficiency.

To handle these high-demand applications, Intel has created Intel Agilex® 7 FPGAs
M-Series, which are the sequel to the successful Intel® Stratix® 10 MX device family.
M-Series devices are implemented on the Intel 7 process technology, which brings
higher programmable fabric capacity and performance while consuming less power.

M-Series devices offer the highest memory bandwidth in the FPGA industry and are
the first members of the Intel Agilex device family to provide in-package HBM2e
memory. M-Series devices also include hardened controllers for other state-of-
the-art memory technologies such as DDR4, DDR5, and LPDDR5. Two hardened
memory network-on-chip (NoC) functions provide the FPGA fabric with high-
bandwidth, resource-efficient access to both in-package HBM2e and onboard
memory resources.

Furthermore, M-Series devices offer class-leading transceiver data rates, critical
for systems processing today’s enormous data loads. With support for PCI Express
(PCIe) Gen5, Compute Express Link, 400G Ethernet, and serial transceivers
operating up to 116 Gbps, the M-Series devices can support the throughput
requirements of the most demanding applications from the data center to the edge.

Markets that will benefit from M-Series devices include, but are not limited to, test
and measurement (arbitrary waveform generators, 5G/6G cellular network test,
GHz RF test); data centers (high performance computing (HPC), cloud computing,
cryptocurrency mining); wireless and wireline (high data rate (888G+) transmission,
optical transport network (OTN), network functions virtualization (NFV), 5G
Baseband); and aerospace and defense (radar, electronic warfare (EW)).

Introduction

Today’s computational workloads are larger, more complex, and more diverse than
ever before. The explosion of HPC, AI, machine vision, video streaming, gaming,
analytics, and other specialized tasks is driving the exponential growth of data.
According to projections from Statista,1 74 zettabytes of data will be created in 2021
alone (a zettabyte is a trillion gigabytes). That's up from 59 zettabytes in 2020 and
41 zettabytes in 2019, and the pace is accelerating.

Industry Grapples with Memory Challenges

1 https://www.statista.com/statistics/871513/worldwide-data-created/

2

White Paper | Addressing Memory-Bandwidth and Compute-Intensive Challenges with Intel Agilex 7 FPGAs M-Series

Before we consider how M-Series devices address today’s
memory bandwidth and capacity requirements, let’s first
consider a high-level view of the M-Series device architecture.
These devices are built using System-in-Package (SiP)
technology (Figure 1).

Many of today’s applications require a hierarchy of memory
resources. This hierarchy allows design teams to make
latency-versus-capacity trade-offs between ultra-low
latency, ultra-high bandwidth on-chip memory (MLAB and
M20K blocks); higher-capacity, high-bandwidth in-package
memory (HBM2e); and ultra-high-capacity on-board memory
(DDR4, DDR5, LPDDR5, etc.) (Figure 2).

Addressing Memory Challenges with M-Series
Devices

The Memory Hierarchy

Figure 1. 		M-Series	device	floorplan.

HBM2e Stack

EMIB

HBM2e Stack

EMIB

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

FPGA DieGPIO (inc. LVDS etc.) or
high-speed memory I/F
(DDR5, LPDDR5, etc.)

H
ig

h-
sp

ee
d

S
er

D
es

 I/
F

SiP Package

IO96 IO96 IO96 IO96 HPSUIB

IO96 IO96 IO96 IO96SDM UIB

Top Hard Memory NOC

Bottom Hard Memory NOC

FPGA Programmable Fabric
(ALMs, LABs, MLABs, M20Ks, DSP Blocks, etc.)

In addition to the main FPGA die, there are four transceiver
(XCVR) tiles and two HBM2e stacks. The XCVR tiles and
HBM2e stacks are connected to the FPGA die using Intel
Embedded Multi-die Interconnect Bridge (EMIB) technology,
which is an elegant and cost-effective approach to the in-
package high density interconnect of heterogeneous chips.
The result is that all these chips function as a single large die.

On-Board Memory

In-Package Memory

On-Chip Memory

QDRIV

DDR4, DDR5, LPDDR5

HBM2e Stacks

M20K Blocks

MLAB Blocks

M-Series devices bring considerable resources to bear on the
memory bandwidth challenge. Let’s examine these from the
inside out, starting with the hyper-local on-chip memories
in the FPGA fabric, then moving to local in-package memory
in the form of the HBM2e stacks, and finally considering the
architecture and interfaces for external memories such as
DDR5 and LPDDR5.

Figure 2. The M-Series device memory hierarchy .

When designers need the highest locality of memory, nothing
competes with the on-chip memory resources in the form
of MLAB blocks and M20K block RAMs embedded in the
programmable fabric.

In-package HBM2e spans a large and critical gap in the
memory hierarchy, enabling today’s data-intensive
applications. The capacity is far greater (more than two
orders of magnitude) than is available with on-chip memory,
and the bandwidth is far greater (more than two orders of
magnitude) than is possible with off-chip memory.

By integrating high-performance HBM2e in the same package
with the FPGA die, we get higher bandwidth, lower power, and
lower latency in a small form factor. Also, since the HBM2e
is embedded in the package, it does not require the use of
external I/O pins, thereby eliminating accompanying board
footprint, power consumption, and interconnect delay issues.

Each HBM2e stack can contain 4 or 8 layers, with each layer
providing 2 GB, so a single M-Series device can contain 16
or 32 GB of high-bandwidth memory. Each stack has an
associated universal interface bus (UIB) function, which
includes eight hard controllers and hard PHYs. Each hard
controller services one HBM2e channel, and each of these
channels is broken down into two pseudo channels (PCs). The
result is to maximize performance across all transactions,
providing up to 410 GBps memory bandwidth per stack,
which is 18X more bandwidth than a DDR5 component and
7X more bandwidth than a GDDR6 component. Combined,
the two HBM2e stacks can provide up to 820 GBps peak
memory bandwidth.2 Each HBM2e stack supports 8 channels,
or 16 pseudo channels that can be used to route data to and
from the stack.

On-Chip Memory

In-Package Memory (HBM2e)

Traditionally, DDR memories have been favored by many
developers to address their memory needs. In recent years,
however, the demand for increased bandwidth, higher
capacity, and greater power efficiency has outpaced the
growth in DDR performance, bringing us to a situation where
more robust solutions are required. Furthermore, flat power
budgets and small form factor restrictions mean that it is
necessary to do more in the same space.

2 System-level throughput can be improved by12.5% when the error correction code (ECC) bits in the HBM device are utilized for storing data.

3

White Paper | Addressing Memory-Bandwidth and Compute-Intensive Challenges with Intel Agilex 7 FPGAs M-Series

For application demands that exceed the HBM2e’s capacity,
or where the additional flexibility of discrete memory is
required, M-Series devices support the latest and highest-
performance DRAM variants -- DDR5 and LPDDR5 -- as well
as other popular memory architectures.

Getting data into and out of the FPGA is critical for today’s
data-intensive applications. Intel Agilex 7 FPGA M-Series
brings massive I/O bandwidth via transceivers capable
of supporting up to 116 Gbps PAM4, CXL, PCIe 5.0, 400G
Ethernet, and a wide variety of other protocols.

M-Series devices support up to 768 primary I/Os connected
to enhanced IO96 subsystems. These pins can function as
general-purpose I/Os (GPIOs) that can support a variety of
electrical interfaces, such as low-voltage differential signaling
(LVDS), or as high-speed interfaces to on-board memory
devices. Meanwhile, the XCVR tiles provide high-speed
SERDES (serializer/deserializer) interfaces that can implement
communications protocols like PCIe 5.0 and 400G Ethernet.

M-Series devices contain up to 12,300 variable-precision DSP
blocks, each of which contains two 18x19 DSP multipliers.
The DSP blocks can support up to 18.5 single-precision
TFLOPS, up to 37 half-precision TFLOPS, and up to 88.6 INT8
TOPS. The floating-point capabilities of these DSP blocks
allow Intel Agilex FPGAs to outperform conventional FPGAs
that have only fixed-point support.

Each NoC provides a horizontal network that connects logic
in the programmable fabric via its AXI4 initiators to NoC-
attached target memories. Furthermore, each NoC provides a
vertical network that can be used to distribute memory read
data from the horizontal network paths deep into the FPGA’s
programmable fabric via optimized routing (Figure 4).

The NoCs route data from its source to its destination via a
network that consists of switches (routers), interconnect links
(wires), initiators (I), and targets (T).

A key differentiator for M-Series devices is the addition of
two hard memory Network-on-Chip (NoC) functions, which
facilitate high-bandwidth data movement between the
FPGA’s programmable fabric and NoC-attached memories
without using existing FPGA routing resources. Each on-chip
HBM2e stack communicates with its NoC via its UIB. Off-chip
memories (DDR4, DDR5, etc.) communicate with the NoCs via
the IO96 subsystems (Figure 3).

Off-Chip Memory (DDR5, LPDDR5, etc .)

Massive I/O Capacity

Extreme DSP Capability

Horizontal and Vertical Networks

Network-on-Chip (NoC) Functions

IO96 IO96 IO96 IO96 HPSUIB
Top Hard Memory NOC

FPGA Programmable Fabric
(MLABs, M20Ks, DSP Blocks, etc.)

HBM2e Stack

EMIB

GPIO (inc. LVDS etc.) or high-speed memory I/F (DDR5, LPDDR5, etc.)

PHY Adapter

Fabric Adapter

Fabric PLL

Calibration
Processor

32-bit
HMC

16-bit
HMC

IO
12

 L
an

e

IOPLLIOPLL

IO
12

 L
an

e

IO
12

 L
an

e

IO
12

 L
an

e

IO
12

 L
an

e

IO
12

 L
an

e

IO
12

 L
an

e

IO
12

 L
an

e

S

S S S

Switch

I 256-bit AXI4 Initiator

T 256-bit AXI4 Target

T 32-bit AXI4-Lite Target

I I I

T TT

Figure 3. A closer look at a IO96 subsystem and a portion of the
top hard memory NoC .

Figure 4. Vertical networks can transport read data from
NoC-attached memory to M20K blocks deep in the
programmable fabric .

HBM2e Stack

EMIB

HBM2e Stack

EMIB

IO96 IO96 IO96 IO96 HPSUIB

IO96 IO96 IO96 IO96SDM UIB

Top Hard Memory NOC

Bottom Hard Memory NOC

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

4

White Paper | Addressing Memory-Bandwidth and Compute-Intensive Challenges with Intel Agilex 7 FPGAs M-Series

The top NoC has 20 x 256-bit initiators and the bottom NoC
has 22 x 256-bit initiators. The bandwidth of each initiator is
256 bits x 700 MHz = 22.4 GBps. With regard to routing read
data from NoC-attached memories into the programmable
fabric and/or M20K blocks, the top NoC’s bandwidth is 256-
bit x 700 MHz x 20 initiators = 3.58 Tbps, the bottom NoC’s
bandwidth is 256-bit x 700 MHz x 22 initiators = 3.94 Tbps,
so the aggregate bandwidth is 3.58 + 3.94 = 7.52 Tbps.

The access-points to the NoCs are known as initiators and
targets. User logic in the programmable fabric connects
to 256-bit AXI4 initiators to initiate requests and send
data (each initiator on the fabric side can be clocked
independently by user clock), while 256-bit AXI targets
provide responses from NoC-attached memories. Every
initiator can talk to every target, thereby giving users the
flexibility to implement a full hardened crossbar. The
switches in the NoC route requests and responses between
initiators and targets using a proprietary protocol.

The host system, which is usually a CPU, generates custom
waveforms that typically last for a few milliseconds and are
carefully crafted to exercise the analog device under test
(DUT) and expose potential problems and weaknesses. These
flaws will be manifested as errors in the DUT’s responses to
the stimulus waveforms.

For highly integrated analog products, the host system will
upload (play-in) multiple super-high-frequency waveforms
that are all perfectly aligned, download (capture) multiple
response output waveforms, and analyze the results. Data
loading and retrieval take place concurrently. Based on
the results of this analysis, new stimulus waveforms will be
applied.

In this particular use case, the FPGA communicates
bidirectionally with the host system via one of its XCVR tiles
that is configured to act as a PCIe 5.0 x16 interface with 64
GBps bandwidth. The FPGA uses its three remaining XCVR
tiles to play these waveforms, which are synchronized
with each other, across 12 digital-to-analog converter
(DAC) channels while simultaneously capturing the output
waveforms from the DUT across 12 analog-to-digital
converted (ADC) channels. The data loader and retriever logic
that orchestrates all of this is implemented in the FPGA’s
programmable fabric (Figure 6).

The use cases presented below3 were selected to reflect the
ratio of computation workload to memory traffic and memory
access patterns that are exhibited by real-world workloads.
These use cases are 5G RF analog hardware-in-the-loop
testing and the Shallow Water Model, which is representative
of weather forecasting workloads.

In the case of companies that make RF and microwave
analog devices -- for example amplifiers or other analog
circuitry that is used in applications like radar and 5G base
stations -- the response of the device must be tested with
high input frequencies. Any anomalies in the response will
manifest themselves across a wide frequency range, spanning
lower frequencies than the operating frequency to higher
frequencies resulting from things like harmonic noise.

A common test scenario is to use hardware-in-the-loop (HIL).
In this particular use case, a M-Series device forms part of a
larger test system (Figure 5).

The 12 DAC and 12 ADC channels each operate at up to 4
Gsps (giga samples per second). With word lengths of 32-bits
per complex sample (16I + 16Q), this equates to a bandwidth
of 15.625 GBps per channel, resulting in an I/O bandwidth of
24 x 15.625 = 375 GBps for the tiles interfacing with the DACs
and ADCs, and a total I/O bandwidth of 375 + 64 = 439 GBps
when the PCIe 5.0-configured tile communicating with the
host system is taken into account.

At this sampling rate, there’s too much data to be stored
in the on-chip M20K memory blocks; instead, it has to be
stored in the in-package HBM2e stacks. Inside the FPGA, the
waveforms from the host system are loaded into the HBM2e
stacks via the NoCs. Playout data from the HBM2e stacks is

Use Cases

5G RF Analog Hardware-in-the-Loop Testing

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

X
C

V
R

 T
ile

E
M

IB

DAC
DAC
DAC
DAC

ADC
ADC
ADC
ADC

HOST
SYSTEM

Device Under Test (DUT)

HBM2e Stack

EMIB

HBM2e Stack

EMIB

IO96 IO96UIB

IO96 IO96 UIB

Top Memory NOC

Bottom Memory NOC

Functions implemented
in programmable fabric

ADC
ADC
ADC
ADC

DAC
DAC
DAC
DAC

DAC
DAC
ADC
ADC

ADC
ADC
DAC
DAC

Figure 5. Using a M-Series device as part of a 5G RF HIL
testbench .

Figure 6. Vast amounts of programmable fabric resources
remain available to implement additional functions
such as data reduction logic .

3 Use cases developed by Intel engineering

IO96 IO96 IO96 IO96 HPSUIB

HBM2e Stack

EMIB

IO96 IO96 IO96 IO96SDM UIB

Top Hard Memory NOC

HBM2e Stack

EMIB

DL&R Data Loader and Retriever

To/From
Host System

To/From
ADCs/DACs

To/From
ADCs/DACs

To/From
ADCs/DACs

DMA Function

Bottom Hard Memory NOC

D
L&

R

Vast amounts of
programmable fabric

resources available
for additional data

processing functions

5

White Paper | Addressing Memory-Bandwidth and Compute-Intensive Challenges with Intel Agilex 7 FPGAs M-Series

fed via the NoCs to direct memory access (DMA) functions
implemented in the programmable fabric. Using optimized
routing for the NoC’s vertical networks guarantees Fmax
closure and frees-up the FPGA’s regular logic resources for
other tasks.

In addition to communicating the data to the DACs driving the
DUT, the DMA functions also buffer the data because DRAM
access is not 100% regular due to activities such as auto-
refresh. Similarly, capture data from the ADCs driven by the
DUT is communicated to DMA functions implemented in the
programmable fabric. These functions pass the data to NoCs,
which -- in turn -- pass it to the HBM2e stacks.

Vast amounts of programmable fabric resources remain
available to implement data reduction logic, such as a
massive fast Fourier transform (FFT) engine that can access
and process data from the top and bottom hard memory
NoCs simultaneously.

For this application to use the HBM2e efficiently, the data is
handled as parallel data streams based on pseudo channels
(PCs). Four PCs on the top and bottom HBM2e stacks are
reserved for the PCIe 5.0 x16, which can read four PCs and
write four PCs simultaneously (double buffering is used
when transferring waveforms from the Host System to the
HBM2e). In each half of the device, six PCs are reserved for
playout data and six PCs are reserved for capture data. In this
design, each PC is used as only a data source or a data sink to
eliminate contention.

The NoCs featured in M-Series devices convey many
advantages, including the fact that the association between
data source and destination can be changed dynamically --
each NoC can be configured as a 16 x 16 switch, so any DAC
or ADC can talk to any PC. The NoCs provide the ability to
read from different PCs simultaneously. If the PCIe is loading
new data into the FPGA while capture is in progress, the
NoC enables the playout engine to read the new waveforms
from different PCs to the ones used for the previous set of
waveforms, which means the application is not stuck with
1:1 associations between DACs and PCs. If required, it’s also
possible to perform full duplex read and write by connecting
user-defined logic in the programmable fabric to the initiators
in the NoCs.

The Shallow Water Model (SWM) fits into a class of HPC
algorithms called stencil problems that simulate physical
phenomena by partitioning the space into discrete cells. To
model the behavior through time, each cell is recalculated
iteratively according to a set of equations that depend on the
current values of a set of variables in each cell, as well as the
values of variables in a set of neighboring cells called a “halo.”

The stencil is a structure that includes the current cell and
its neighboring cells. Using a stencil, we can parallelize
the computation so that large numbers of cells can be
recomputed at the same time.

This SWM example can be a proxy for a wide range of
applications and problem domains. Thermodynamic
problems, for example, use stencil-based computations
to simulate how heat moves through a semiconductor
package. Other applications such as antenna simulation and
computational fluid dynamics use similar approaches, where
we discretize space and time and apply a set of equations at
each time step.

The Shallow Water Model

Weather forecasting models use complex stencil-based
methods to model pressure, temperature, wind velocity,
and other variables in creating and updating forecasts. Our
example will be a proxy to weather modeling (which is a 3D
problem and has more than 10 variables to compute at each
point). We will use SWM code that is part of the SPECfp2000
benchmark suite to illustrate the performance benefits of
HBM2e and DDR5 in stencil-based computations. SWM
simplifies the weather model to a 2D problem with three
variables: p (pressure), v (vertical component of velocity), and
u (horizontal component of velocity).

In weather forecasting, cells are updated many times at
discrete time steps to predict the weather one or two days
into the future. SWM maintains current and prior variable
values for each cell in memory, updates them at each time
step according to a set of update equations, and then writes
the new values back to memory. This is performed until the
entire space is computed.

When using FPGAs to accelerate compute-intensive
workloads such as this, most designers start from the
perspective of maximizing datapath parallelism. This
is natural, as FPGAs, with their copious DSP/arithmetic
resources, offer the potential for massive acceleration of
algorithms manipulating large arrays of data.

However, because M-Series devices are specifically designed
for cases where memory and/or I/O are the computational
bottlenecks, a better approach may be to explore the
solution from the perspective of using all available memory
bandwidth, and then determining the amount of data
parallelism required to support the specified bandwidths.

Our calculation employs three variables as follows:

u – Horizontal component of velocity

v – Vertical component of velocity

p – Pressure

Prior to optimization for FPGA acceleration, the calculation
has the following phases:

1. Use p, (u, v) to calculate a set of intermediate variables (U,
V), z, h to save computational effort.

2. Exchange freshly calculated intermediate variable values
by applying cyclic boundary conditions to (U, V), z, h.

3. Use the (U, V), z, h intermediate values to calculate new p,
(u, v) values.

4. Apply cyclic boundary conditions to p, (u, v).

5. Time-smooth the p, (u, v) by keeping old versions of the
data (we actually keep two copies of the historical data to
facilitate sequential read/write).

Our implementation utilizes oneAPI to facilitate seamless
development for heterogeneous targets. It combines phases
1 and 2 and coalesces phases 3, 4, and 5 to improve memory
efficiency, resulting in an algorithm with two computational
stages separated by boundary data exchanges (Figure 7).

Data Flows

6

White Paper | Addressing Memory-Bandwidth and Compute-Intensive Challenges with Intel Agilex 7 FPGAs M-Series

Memory Requirements

To maintain sequential access patterns, we must create
two buffers in which to store the “old” values of our three
variables. We will call these (pold, vold, uold) top, (pold,
vold, uold) top’, and This allows us to read from one pseudo-
channel while writing to another. We split each copy of the
array into two halves, one half stored in the top HBM2e
stack, and one stored in the bottom. The 40 computational
pipelines are similarly distributed between the top and
bottom halves of the device fabric, each pipeline working on
data from the nearest memory (Figure 8).

This analysis is based on a 64x64 computational patch
size. Its surface to volume ratio -- and hence ratio of
communication to computation -- is representative of many
parallel algorithms. Our array is 64x64. Each element in
the array contains three double-precision floating-point
values. We need to stripe the array across multiple pseudo-
channels, putting the first 64 bytes of the array into the
first pseudo-channel, then the next 64 bytes into the next
pseudo-channel, and so on, in order to achieve a good
logical-to-physical address mapping. This consumes all 16
pseudo-channels plus four DDR5 channels on each of the top
and bottom HBM2e arrays. We access these 20 channels on
each side using 10 initiators of the NoC. Since our initiators
are full-duplex, they can read and write to a pair of pseudo-
channels at the same time. This allows us to effectively use up
the memory bandwidth without running out of initiators.

Implementation

Figure 7. 	Data	flows	within	an	iteration.

Figure 8. In one iteration, we read from the top channel(s)
[HBM2e+DDR5] and write to the top’ channel(s) . In
the next iteration, we read from top’ and write to top .
Similarly for the bottom .

u, v u, v

pp

U

V

z

h

uold, vold uold, vold

poldpold

Calculate
U, V, z, h

Calculate
and smooth

u, v, p

Stage 1 Stage 2

Stage 1: Calculates the intermediate values U, V, z, and h from
u, v, and p. At the boundary between Stage 1 and Stage 2,
there is an update of the boundary conditions where freshly
calculated intermediate values are copied into halo cells
along the edges of the 2D grid.

Stage 2: Read intermediate values and the current values
to calculate new u, v, and p values. The time-smoothing
computation uses current, new, and previous variable values
to ensure numerical stability. For time-smoothing, we also
need to read old values.

Since this is a memory-bound computation, we will minimize
the number of arrays stored in HBM2e and DDR5 to improve
the performance by utilizing M20Ks to store some variables.

In our scenario M20Ks are used to store u, v, p, U, V, z, and
h array values. 896 M20Ks are used for storing SWM’s 3
variables + 4 intermediate variables for a 64 x 64 patch size.
This reduces inter-stage latency between Stage 2 and Stage 1
of the next iteration and reduces the idle time in computation.
“Old” p, u, v array values used in time-smoothing are stored in
DDR5/HBM2e. Only Stage 2 uses these “old” p, u, v values, so
the DDR/HBM access latency is less important–DRAM output
from Stage 2 can be committed to memory while Stage 1 of
the next iteration is in progress.

For maximum throughput, we can use all the available 32
pseudo-channels of HBM2e (16 on the top and 16 on the
bottom) and also use 8x32 GB DDR5 memories (4x32 GB on
the top, and 4x32 GB on the bottom).

An efficient formulation of Stage 2 uses two copies of
historical data. It reads uold, vold, and pold from half the
memory channels, performs the calculations, and then writes
new versions of these arrays to the other half of the memory
channels. This purely sequential access pattern enables
each memory channel to operate at 22.4 GB/s. Therefore,
we can attain a device aggregate of 716GB/s (HBM2e only) or
896GB/s (HBM2e + DDR5) (for a -2 speed-grade FPGA).

In double-precision floating-point, the memory bandwidth
is matched by data path parallelism. We should aim for data
parallelism of 40, if using all 40 memory channels (32 HBM2e
+ 8 DDR5). This means that the fabric will read 40 elements
of each row simultaneously feeding 40 computational
pipelines. We need to arrange data so that all the memories
are constantly busy with sequential reads and writes, thereby
ensuring that DRAM bandwidth is fully utilized.

IO96 IO96 IO96 IO96 HPSUIB

IO96 IO96 IO96 IO96SDM UIB

Top Hard Memory NOC

Bottom Hard Memory NOC

EMIB

HBM2e Stack

EMIB

HBM2e Stack

oneAPI Calculations Stage 2

(pold, uold, vold) bot (pold, uold, vold) bot’

(pold, uold, vold) top (pold, uold, vold) top’

DDR5

DDR5

DDR5

DDR5

DDR5

DDR5

DDR5

DDR5

S
ta

ge
 1

7

White Paper | Addressing Memory-Bandwidth and Compute-Intensive Challenges with Intel Agilex 7 FPGAs M-Series

No product or component can be absolutely secure.

Your costs and results may vary.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

WP-01313-1.2

Each iteration of the algorithm performs 65 floating point
operations per cell: 25 multiplications, 39 additions, and
one division. Implemented in double precision, 40 pipelines
consume 3,360 of the M-Series device's12,500 DSP blocks.
Since the two computational stages are not simultaneously
active, we can project application performance of up to 650
double-precision GFlops based on a fabric frequency of 500
MHz.

Today’s computational workloads are larger, more complex,
and more diverse than ever before. Some applications require
the streaming of vast quantities of data, while others are
characterized by large quantities of short random bursts.
Similarly, some algorithms may demand minimal latency
when accessing memory, while others may be more tolerant.

To handle these high-demand applications, Intel has
created the M-Series device ― the first Intel Agilex FPGAs
implemented on the Intel 7 process technology that feature
in-package HBM2e memory. M-Series devices also include
hardened controllers for other state-of-the-art memory
technologies such as DDR5 and LPDDR5. Hard memory NoC
functions provide the FPGA fabric with high-bandwidth,
resource-efficient access to both in-package HBM2e and out-
of-package (on-board) memory resources.

Conclusion

The biggest challenges in networking, data center, and edge
require the combination of high compute resources coupled
with high memory and high I/O bandwidth. M-Series devices
offer the most INT8 TOPS and FP32 TFLOPs of any HBM-
enabled FPGA. They also offer the highest aggregate memory
bandwidth -- over 1 TBps using both HBM2e stacks and all
eight DDR5 interfaces. Furthermore, M-Series devices deliver
over 2.65 Tbps aggregate serial transceiver bandwidth in
each direction (over 5.3 Tbps full-duplex) for next generation
800G/1.6T networking and network functions virtualization
infrastructure (NFVI) applications.

The power of M-Series devices is available to all developers --
hardware design engineers can use the Intel® Quartus® Prime
Software design tool, while software developers can employ
oneAPI (a core set of tools and libraries for developing
high-performance, data-centric applications across diverse
architectures).

http://www.Intel.com/PerformanceIndex

