Intel Draft for Review

Intel® Platform Innovation Framework
for EFI

Human Interface Infrastructure
Specification

Draft for Review

Version 0.91
April 1, 2004

intel
Human Interface Infrastructure Specification Draft for Review '

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © 2000-2004, Intel Corporation.

Intel order number xxxxxx-001

April 2004 Version 0.91

intel

Draft for Review

Revision History

Revision

Revision History

Date

0.9

First public release.

9/16/03

0.91

e Changed, added, and/or corrected the following:

EFI_FORM_BROWSER PROTOCOL.CreatePopUp()
EFI FORM BROWSER PROTOCOL.SendForm()
EFI_FORM_CALLBACK PROTOCOL.CallBack()

EFI_ FORM_CALLBACK PROTOCOL.NvRead()
EFI_HII_FONT PACK

The Type values in EFI_HIl_PACK HEADER

EFl HIl PROTOCOL (Forms Entries)

EFI_HIl PROTOCOL (Keyboard Functions)

EFl_HIl PROTOCOL.ExportDatabase()
EFI_HII_PROTOCOL.GetDefaultimage()
EFI_HII_PROTOCOL.GetForms()
EFI_HII_PROTOCOL.GetKeyboardLayout()
EFI_HII_PROTOCOL.NewPack()

EFI_HIl PROTOCOL.NewPack() (Font-Related Entries)
EFl HIl PROTOCOL.NewPack() (String-Related Entries)

EFI_HIl_ PROTOCOL.NewsString()

EFI_HIl PROTOCOL.UpdateForm()

EFI_HIl_ STRING _PACK

EFl_IFR_FORM_ SET

The "Description" subsection in EFl_IFR_NUMERIC
EFl_IFR_ONE_OF

EFI_IFR_OP HEADER

EFI_NARROW_GLYPH

Glossary
Human Interface Overview Introduction

Introduction in Code Definitions
Numeric: <numeric> in Design Discussion

Overview in Introduction

References

e Created a new GUID for EFI_HIl PROTOCOL.
¢ Added the Keyboard Layout section in Design Discussion.

¢ Deleted the "Results Routing" topic in Design Discussion >
Design Rationale.

¢ Added the opcode value that applies to each IFR tag.

4/1/04

Version 0.91

April 2004

continued

Human Interface Infrastructure Specification Draft for Review

Revision

Revision History

Date

0.91 (cont'd)

Moved any type definitions that were included in protocol
definitions to the first function that calls them and updated all links
and references.

Updated descriptions for many parameters.

Made minor, nontechnical grammatical improvements throughout
the specification.

4/1/04

April 2004

Version 0.91

Intel Draft for Review

Contents

I {18 o Yo [0 o] 4 o) I 9
L@ A =T YT OSSP 9
PUIIOSE ... ettt e e e et et e e e et et e b e e e e e aeetrerba s 9
(O YT oY= PP 10
(€1 (01T o PP PPPP P PPPPPRPPPP 10
=] 1] €= o] =S 13
Conventions Used iN ThiS DOCUMENT..........uu i 14
Data Structure DesCriptioNScooeeiiiii e 14
ProtOCOI DESCIIPLIONSuvieiiiiiee ittt e e et e e e e e e e s e e e e e e s aanne 15
Procedure DeSCHPLIONSuuii eenrena s 15
PSeudo-Code CONVENTIONSooiiiiiiiiiieiee ettt a e e e e e e e e e e e e s annnes 16
TypographiC CONVENTIONS.uuiiiiiiiiieee ettt e e e e e e e 16

2 DESION DISCUSSION ..uuiiiiieeiiiiieiiiiie sttt e e e e et r e e e e e e e e e e st e e eeaes 19
(DTS o I Vi) = LSRR 19
T o] (oo [0 T 1T o N UPPPPPRTRRR 19
YT o T =T a = To =0 0= o | 19

Y ([T LY, =T = o =T =T o | P 19

Limiting Glyphs in Firmware VoIUMES ... 19

UNICOOE oo 20

LOCAliZAtION ISSUBS ..o e 21

L0 =] o] o 11 | PP 22
HTIML @NA TFR .o et e e e e e e e e et e e e e e e e e ee bt eeeas 23
HUMaN INtErface OVEIVIEW.......coiiiiiiiiiieeeieeee ettt eeeeeeeeeeeeeeeeees 24
Human Interface INtrodUCtioNoooiiiii i, 24
PaCKage HEAUET ...t e e e e e e s 25
Package ManipUlationcoooiii oo 25
Packages DefiNitioN............uuiiiii it 25
Human Interface Infrastructure (HII) Protocolccoooeii 25

FONE PACKAGE ...ttt e e e e et e e e e e e e neees 26
T 100 (1 T3 1 o] o ST 26
(€117 o] IR 26
(€117 o]l L] o] (=1 =T g r= Ui [o] o PP PP PPUPPPPPPPPN 26
1111010 1 PP PPPP R PPPPPPRPPP 26
1100 (3031 o] o TR 26
Internal String REPIreSENTALION..........uuiiii e 27
Lo T = Tod = T T PRSP 28
€0 = PRSP 28
FOIrMS @nd FOIMM SEES.....uuiiiiiiiiiiiiee et e e e e e e e 29
SemantiCs and Tag SITUCTUIESuiiiiiiii e e e e e 29
Form Packages and SCOPING ... e 29

OIS s 30

DEVICE DESCIIPLIONSceeiiiiieeeiieiitie ettt e e e eas 30

Titles, Subtitles, and Text: <subtitle>, <tEXI>............eveeiiiiiiiiiiiiiiiiiienees 30

Version 0.91 April 2004 v

intel
Human Interface Infrastructure Specification Draft for Review '

QUESTIONS ittt ettt et e e e e e e e e e e e e et e e e e e e eeees bbb e e eeeaeeaens 30

IMBGE oo e s 34

27 T4 (o o 18] o o 34

Visibility Control: <grayout>, <SUPPIESS™cuvurirrirruiirniinnninnninnnnennnnnnnnnnnnnnns 35

BOO0IEAN EXPIrESSIONS.....ciiiiiiiiiiiiitiii ettt e e 35

Using Grayed-Out Parts of a FOrm ... 36

(0701151551 (=] 103V 4 T=Tod 14 T 36

DYNamIC Data........ccooeiiieeiee 37
LADEIS e —————— 37

Advanced Operations (OPLioNal)cooeeuuiiiiii e 37
Advanced Operations (OPtioNaAl)uvvvriiiiiiriiiiiii s 37

SHING INPUL et e e e e e e e 37

(=) Y70 T= T o N I Y o U | PSSR 38
[NCE3Y oToT=T (o 1Y/ = o] [Vo [38
MOITIEE KKBY'S ..ttt e e e e e e e e e e e e e e bbb e e e e e e e e e ane 39
DAl KBY S ... e 40
Keyboard Layout SWILCNING........ccoovuiiiiii e e e e 41
Dynamic Processing Of NV/IFR Data............cuuviiiiiiiiiiiieiiiieiiieiisesisessssssessssesreenreenn.. 41
Form Callback ProtoCol...........coooiiiiii e 41
BrOWSEI INTEITACEceiiiieiiiei ettt ee e e eeeeeeeeas 41
FOImM BroWSET PrOTOCOL.eiiiiiiiiiiiiiiieiei ettt e e e e e 41
RUNTIME REPIESENTATIONS. ... euiiiiiiieeie ittt e e e e a e e e e e 42
Using IFR at RUNEIME ... 42
Limitations of Presentation MechaniSmS.........ccooooiii e 42

R OTo Lo F=T BT T o TN Lo o =S 43
T 1o To 1B Tox o] o R 43
= 03 €= o = 44
Package Header ... 44
EFI_HII_PACK _HEADER........cc ittt a e 44

Packages DefiNitioN............uuiiiiiii e 45
EFI_HIL_PACKAGES.......ooti ittt 45

Human Interface Infrastructure (HI) ProtoColooociiiiiiiiiiiiiiiiiecceeee e 47
EFI_HIL_PROTOGCOL ...otiiiiiieieiiccieeee ettt a e e e e e 47
EFI_HII_PROTOCOL.NEWPACK() ... etteeeeiiiiiiiiiiiiiiee e 50
EFI_HII_PROTOCOL.ReMOVEPACK()cccuvvviiiiiiieeeee e 52
EFI_HII_PROTOCOL.FINAHANAIES().....cceeeieeeeiiieeee e 53
EFI_HIl_PROTOCOL.ExportDatabase()cccccuvvvviiiiieieiieiiiie e, 54

o] 0 A = (o 1= T = PP 59
(€117 o]l L] o] (== T g r=Ui[o] o TP PPPPPPPPPPPPPN 59
EFI_NARROW _GLYPH ..ottt 59
EFI_WIDE_GLYPH ..ottt 60
EFT_HIL_FONT _PACK .. .ottt e e e aee s 61

HII Protocol Font-Related ENtHES........ooooeeieeeieeeeee e 63

HIl Protocol Font-Related ENTHES.... ... 63
EFI_HIl_PROTOCOL (Font-Related ENtries)ccccceeveeeeiiiii e 63
EFI_HIl_PROTOCOL.NewPack() (Font-Related Entries)c.cceeeeeeeeeennn. 64

Vi April 2004 Version 0.91

intel

Draft for Review Contents
EFI_HII_PROTOCOL.TEStSING() ++veeeeeeeiiirririiiiieeeeeiiiiiiiieee e e e e ssiiiiieeeeee s 65
EFI_HII_PROTOCOL.GELGIYPN()-uuuuuuniiiieiiieeieeee e sss s ee s e 66
EFI_HII_PROTOCOL.GIYPNTOBIL() ..o ee oo 68

Sl NG S oot 70
5] 1110 TP PP TP PPPPPPPPPPPPN 70
[S I 41 70

String Package SIrUCKUIEcoooiiiii e e e e e e e e e e e e e e eeeees 71
EFI_HIL_STRING_PACK ... 71

HIl Protocol String FUNCHIONS. ... e e e e 73
EFI_HII_PROTOCOL (String FUNCLIONS)iiiieiiiieiiiie e 73
EFI_HIl_ PROTOCOL.NewPack() (String-Related Entries)eceo..... 75
EFI_HII_PROTOCOL.NEWSIING() ++vreeeeeeeiiiiiiiniiieeeee et 76
EFI_HII_PROTOCOL.GetPrimaryLanguages()ccceeeeeeeeeeaaeaaaeaaaeeeeeeeeeeeeenn 78
EFI_HII_PROTOCOL.GetSecondaryLanguages()cevrreervrniiierereeeennnnnnnns 79
EFI_HII_PROTOCOL.GEtSNG() - eeeeeeeeeeeeeeeeieee et 81
EFI_HII_PROTOCOL.GELLINE() -eeteeee e 83

01 = Vo] = T = 85
FOIrM LanQUAGE SYNEAXiieiuiiiiiiiie ettt e et e et s e et e e e e ean s e e e eba s e eeaeaaeeees 85
MEBLA-SYNEIAX ..o 85
Internal Form Representation (IFR) Language Syntax Definitionc...oooovvvvninnnnn. 86
EFI_IFR_OP_HEADER ... 86
EFL_IFR_FORM _SET ..o 88

o S 0] Y 90
EFI_IFR_SUBTITLE ... 91

B IR T EXT e 92
EFL_IFR_ONE_OF .o 93
EFI_IFR_CHECKBOXuutiiiiiiiiis s e a e e e aa e e e e 96
EFIL_IFR_NUMERIC ...t 98
EFI_IFR_PASSWORD ...ttt 100
EFI_IFR_ORDERED _LIST ... 102
BRI R REF 104

[o S 100\ 105

[L S €1 2 72 0 1 U N 106
EFI_IFR_SUPPRESS.o 107
EFI_IFR_INCONSISTENT ..ot 108

o N S N = 109
EFL_IFR_VARSTORE ... 110
EFL_IFR_VARSTORE_SELECT ... 111
EFI_IFR_VARSTORE_SELECT _PAIR ...t 112

BOOIEAN EXPIrESSIONS.....uieiiiiiee aeaaeens 113

HII Protocol FOrmS ENtIES ... 116
EFI_HII_PROTOCOL (FOrms ENtri€s)ccvurriiiieeeiiiiiiiiiieeeeee e 116
EFI_HII_PROTOCOL.NewPack() (Form-Related Entries)ccccccceeeunnn 117
EFI_HII_PROTOCOL.GELFOIMMS() - e e 118
EFI_HIl_PROTOCOL.GetDefaultlmage().......cccoeeeereeiieiieiee e, 120
EFI_HII_PROTOCOL.UpdateForm()ococummmmriiieeeeiiiiiieeeeee e 122

Version 0.91

April 2004 vii

intel
Human Interface Infrastructure Specification Draft for Review '

()Y oo = o I N o 11 | 125
HIl Protocol Keyboard ENIIESuuueiiiiiiiiiiiiiiiieeee et 125
EFI_HIl_PROTOCOL (Keyboard FUNCLIONS).......cccceeiaiiiaaiiaaeeaeee e 125
EFI_HIl_PROTOCOL.GetKeyboardLayOout()........ccoeeereeeiieeiieeiiieiiieeeeeeeeeeenn, 126
Dynamic Processing Of NV/IFR Dal@l.......ccuuiiieiiiiiiiiiiiiiiie et 130
Form Callback ProtocCol...........ooooeiii i 130
EFI_FORM_CALLBACK _PROTOCOLccuttiiiiiiieeeeiiiiiiieeeeee e 130
EFI_FORM_CALLBACK_PROTOCOL.NVRead()ccccurrrrerreeeerniiiiiinnen 131
EFI_FORM_CALLBACK _PROTOCOL.NVWIIE() ..ceeeeeeeeeeeeeeeieeeeieeeeeeeeeeeennn 133
EFI_FORM_CALLBACK_PROTOCOL.CallBack().......cccuvvrrrrrreeeeeriinrrrnnnnn. 135
BrOWSET INTEITACEeiiiiiiiiii et e e e e s s e e e e e e e e 139
FOrm Browser ProtOCOL..........ii i e e e e 139
FOrm BrowsSer ProtOCOLo 139
EFI_FORM_BROWSER_PROTOCOL.......ccuttiiiiiiaeeeiiiiiiiieeeee e 139
EFI_FORM_BROWSER_PROTOCOL.SendForm()cocecevevevreeeenreranns 140
EFI_FORM_BROWSER_PROTOCOL.CreatePopUp() .. .cceeereeeeeeiiinrinnnnnn. 143
4 Conventions for IFR to HTML Translationccccocoviiiiiiiiiiiii e 145
Conventions for IFR t0 HTML Translation............ccooiiiiiiiiieieeeiiiiieeeee e 145
Figures
Figure 2-1. Managing Human Interface COmpoNents............cccccvevvevviieeiieeeeieeeeeeeeeeeeeeeeeee, 24
Figure 2-2. KeybOard LAYOUL.........coooiuuiiiiiiiieeeee ittt 38
Figure 3-1. Keyboard LAYOUL............ouuiiiiiiiiiiiiiiiiiiiiieitieieieeeeeeeaeeeeeeeneenneeeneeneeeeneennnnnnnnnnnnnnns 128
Tables
Table 2-1. LOCANIZALION ISSUBSuuiiiiiiiiiiiieii e 21
Table 2-2. Differences between HTML and IFR ... 23
Table 3-1. Value Passed in the Data POINter........ccoooeiieiiiiee e 136
Table 4-1. Suggested Translations between IFR and HTML.............cccciviivieeene, 145

viii April 2004 Version 0.91

Intel Draft for Review

1
Introduction

Overview

This specification defines the core code and services that are required for an implementation of the
Human Interface Infrastructure (HII) of the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the "Framework"). This specification does the following:

e Describes the basic mechanisms to manage user input

e Provides code definitions for the Hll-related protocols, functions, and type definitions that are
architecturally required by the Intel® Platform Innovation Framework for EFI Architecture
Specification

Purpose

This document describes the mechanisms by which the Intel® Platform Innovation Framework for

EFTI (the "Framework") manages user input. The major areas described include the following:

e String and font management.

e User input abstractions (for keyboards and mice), mainly those used during the Driver
Execution Environment (DXE) and Boot Device Selection (BDS) phases.

o Internal representations of the forms (in the HTML sense) that are used for running a preboot
setup

o [External representations, and the derivations of those representations, of the forms that are used
to pass configuration information to runtime applications and the mechanisms to allow the
results of those applications to be driven back into the firmware.

General goals include:

o Simplified localization, the process by which the interface is adapted to a particular language.

e A "forms" representation mechanism that is rich enough to support the complex configuration
issues encountered by platform developers, including stock keeping unit (SKU) management
and interrelationships between questions in the forms.

e Definition of a mechanism to allow most or all the configuration of the system to be performed
during boot (DXE/BDS), at runtime, and remotely. Where possible, the forms describing the
configuration should be expressed using existing standards such as XML.

e Ability for the different drivers (including those from add-in cards) and applications to
contribute forms, strings, and fonts in a uniform manner while still allowing innovation in the
look and feel for Setup.

Version 0.91 April 2004 9

intel
Human Interface Infrastructure Specification Draft for Review '

Encourage a "walk up and use" (WUU) user interface. Most applications are designed to be
used repeatedly. User interface designers must trade off learnability for usability. The goal of
WUU applications is to be instantly usable without a learning curve or other documentation.
Design characteristics include the following:

— A simplified interface.

— Continual display of both keys and context-sensitive help, rather than having the user ask
for it.

— Minimal shortcuts (most people become confused by more than one method for doing
things).

— An interface that is analogous to a common interface. At this time, a generic web browser
is probably the most universal nonproprietary interface.

Overview

This document describes the following:

General design rationale and concepts

Data structures. They are described more or less bottom up, in the following order:
Fonts

Strings

Internal Form Representations (IFRs)

Mechanisms to map internal representations

Mechanisms to map to external representations (such as XHTML).

Code interfaces

It is important to note which concepts are required by the architecture and which are considered
possible implementations. In general, all of the definitions expressed in the Extensible Firmware
Interface (EFI) standard protocol/member function format are architectural. Except where noted,
database information and representations are architectural. The tools are not architectural, nor is, of
course, the rationale. Variances from these general rules are noted.

Glossary

The following definitions, except where noted, are not EFI specific. See the master glossary in the
Framework Interoperability and Component Specifications help system for additional terms.

Alt-GR Unicode

10

Represents the Unicode value of a key when the Alt-GR modifier key is being held down.
This key (A2) in some keyboard layouts is defined as the right alternate key and serves the
same function as the left alternate key. However, in many other layouts it is a secondary
modifier key similar to shift. For instance, key C1 is equated to the letter a and its Unicode
value in the typical U.K. keyboard is a nonshifted value of 0x0061. When the Alt-GR key is
held down in conjunction with the pressing of key C1, however, the value on the same
keyboard often produces an &, which is a Unicode 0x00E1.

April 2004 Version 0.91

intel
) Draft for Review Introduction

DBCS
Double Byte Character Set.
dead key

Typically an accent key that does not advance the cursor and is used to create special
characters similar to A4AaEEUGU{. This function is provided only on certain keyboard
layouts.

font

A graphical representation corresponding to a character set, in this case Unicode. The
following are the same Latin letter in three fonts using the same size (14):

A
A

A
font glyph

The individual elements of a font corresponding to single characters are called font glyphs or
simply glyphs. The first character in each of the above three lines is a glyph for the letter "A"
in three different fonts.

form
A description of a page or pages which describe fields for user input. See e.g. [HTML
Chapter 10.

glyph

The individual elements of a font corresponding to single characters. May also be called font
glyphs. Also see font glyph above.

HIl
Human Interface Infrastructure.
HTML

Hypertext Markup Language. A particular implementation of SGML focused on hypertext
applications. HTML is a fairly simple language that enables the description of pages
(generally Internet pages) that include links to other pages and other data types (such as
graphics). When applied to a larger world, HTML has many shortcomings, including
localization (q.v.) and formatting issues. The HTML form concept is of particular interest to
this application.

IFR

Internal Form Representation. Used to represent forms in EFI so that it can be interpreted as
is or expanded easily into XHTML.

IME

Input Method Editor. A program or subprogram that is used to map keystrokes to logographic
characters. For example, IMEs are used (possibly with user intervention) to map the Kana
(Hirigana or Katakana) characters on Japanese keyboards to Kanji.

Version 0.91 April 2004 11

intel
Human Interface Infrastructure Specification Draft for Review '

12

internationalization

In this context, is the process of making a system usable across languages and cultures by
using universally understood symbols. Internationalization is difficult due to the differences
in cultures and the difficulty of creating obvious symbols; for example, why does a red
octagon mean "Stop"?

keyboard layout

The physical representation of a user’s keyboard. The usage of this is in conjunction to a
structure that equates the physical key(s) and the associated action it represents. For instance,
key C1 is equated to the letter a and its Unicode value in the typical U.K. keyboard is a
nonshifted value of 0x0061.

localization

The process of focusing a system in so that it works using the symbols of a language/culture.
The following design is influenced in major part by the requirements of localization.

logographic

A character set that uses characters to represent words or parts of words rather than syllables
or sounds. Kanji is logographic but Kana characters are not.

NV
Nonvolatile.
scan code

A value representing the location of a key on a keyboard. Scan codes may also encode make
(key press) and break (key release) and auto-repeat information.

SGML
Standard Generalized Markup Language. A markup language for defining markup languages.
shifted Unicode

Represents the Unicode value of a key when the shift modifier key is being held down. For
instance, key Cl1 is equated to the letter a and its Unicode value in the typical U.K. keyboard
is a nonshifted value of 0x0061. When the shift key is held down in conjunction with the
pressing of key C1, however, the value on the same keyboard often produces an A, which is a
Unicode 0x0041.

SKU
Stock keeping unit.
string
A null-terminated ordered list of 16-bit Unicode characters.

UGA
Universal Graphics Adapter.

VFR

Visual Forms Representation.

April 2004 Version 0.91

intel
) Draft for Review Introduction

Wuu

Walk up and use. A user interface in which the goal is to be instantly usable without a
learning curve or other documentation.

XHTML

Extensible HTML. XHTML "will obey all of the grammar rules of XML (properly nested
elements, quoted attributes, and so on), while conforming to the vocabulary of HTML (the
elements and attributes that are available for use ant their relationships to one another)."
[PXML, pg., 153]. Although not completely defined, XHTML is basically the intersection of
XML and HTML and does support forms.

XML

Extensible Markup Language. A subset of SGML. Addresses many of the problems with
HTML but does not currently (1.0) support forms in any specified way.

References

This section lists user-interface-related information that may be useful to you or that is referenced
in this specification. See the master references in the Framework Interoperability and Component
Specifications help system for additional references.

User Interface
e [PUI] Programming the User Interface: Principles and Examples, Judith R. Brown, Steve
Cunningham, John Wiley & Sons, 1989, ISBN: 0-471-63843-9.

e [Tufte83] The Visual Display of Quantitative Information, Edward R. Tufte, Graphics Press,
1983.

o [Tufte90] Envisioning Information, Edward R. Tufte, Graphics Press, 1990.
o [Tufte97] Visual Explanations, Edward R. Tufte, Graphics Press, 1997.

Localization
o [DBCS] Japanese Language DBCS (Double Byte Character Set): MS-DOS Version, Sizuoka
Information Industry, AX Conference, 1991.

e [DIS] Developing International Software For Windows 95* and Windows NT*, Nadine Kano,
Microsoft Press, 1995, ISBN: 1-55615-840-8.

Markup Languages
e [HTML] HTML: The Definitive Guide, 2" Edition, Chuck Musciano and Bill Kennedy,
O’Reilly and Associates, Inc., 1997, ISBN: 1-56592-235-2.

e [PXML] Professional XML, Didier Martin, Mark Birbeck, et. al., Wrox Press, April, 2000,
ISBN: 1-861003-11-0.

e [XMLP] XML: A Primer, Simon St. Laurent, MIS:Press, 1998, ISBN:1-5582-8592-X.

e [JavaScript] JavaScript: The Definitive Guide, 3" Edition, David Flanagan, O’Reilly and
Associates, Inc., 1998, ISBN: 1-56592-392-8.

Version 0.91 April 2004 13

intel
Human Interface Infrastructure Specification Draft for Review '

Other References
o [SVGA] Super VGA Graphics Programming Secrets, Steve Rimmer, Windcrest / McGraw-
Hill, 1993, ISBN: 0-8306-4428-8.

e The Annotated Alice: Alice’s Adventures in Wonderland and Through the Looking Glass, Lewis
Carroll, Martin Gardner, Meridian, 1960.

e [ISO 9995] ISO Standard 9995, Keyboard layouts for text and office systems,
http://www.iso.ch/iso/en/ISOOnline.frontpage*.

Conventions Used in This Document

This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions

Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve any
reserved field.

The data structures described in this document generally have the following format:

ST R U CTU R E NA M E The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by this

data structure.

In C structure definitions, the construct [- - -] indicates a variable length array, rather than a
pointer to a variable length array. The number of elements can be discerned from other elements in
the array. For example:

UINT16 NumberOfNarrowGlyphs;
UINT16 NumberOfWideGlyphs;
NARROW_FONT NarrowGlyphs[...];
WIDE_FONT WideGlyphs[...]

The number of elements in NarrowGlyphs is defined by NumberOfNarrowGlyphs.

14 April 2004 Version 0.91

intel

Protocol Descriptions

Draft for Review Introduction

The protocols described in this document generally have the following format:

Protocol Name:

Summary:
GUID:

The formal name of the protocol interface.

A brief description of the protocol interface.

The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:

Parameters:

Description:

Related Definitions:

Procedure Descriptions

A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

A brief description of each field in the protocol interface
structure.

A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

The procedures described in this document generally have the following format:

P oC ed ure N ame () . The formal name of the procedure.

Summary:
Prototype:
Parameters:
Description:

Related Definitions:

Status Codes Returned:

Version 0.91

A brief description of the procedure.
A “C-style” procedure header defining the calling sequence.
A brief description of each field in the procedure prototype.

A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

The type declarations and constants that are used only by this
procedure.

A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

April 2004 15

In

a
Human Interface Infrastructure Specification Draft for Review e '

Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding

to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In

First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions

This document uses the typographic and illustrative conventions described below:

16

Plain text

Plain text (blue)

Bold

Italic

BOLD Monospace

Bold Monospace

Italic Monospace

Plain Monospace

The normal text typeface is used for the vast majority of the descriptive
text in a specification.

In the online help version of this specification, any plain text that is
underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

In the online help version of this specification, words in a Bold
Monospace typeface that is underlined and in blue indicate an active
hyperlink to the code definition for that function or type definition. Click
on the word to follow the hyperlink. Note that these links are not active
in the PDF of the specification. Also, these inactive links in the PDF may
instead have a Bold Monospace appearance that is underlined but in
dark red. Again, these links are not active in the PDF of the specification.

In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

April 2004 Version 0.91

intel
) Draft for Review Introduction

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.

See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.

The Framework Interoperability and Component Specifications help system is available at the
following URL:

http://www.intel.com/technology/framework/spec.htm

Version 0.91 April 2004 17

http://www.intel.com/technology/framework/spec.htm

intel
Human Interface Infrastructure Specification Draft for Review '

18 April 2004 Version 0.91

Intel Draft for Review

2
Design Discussion

Design Rationale

Introduction

This section explains the design decisions that are incorporated into the interfaces defined in Code
Definitions.

String Management

String Management

The standard representation for string characters in the Framework environment is Unicode 16
(UTF-16). At first glance that statement would seem to be enough discussion on string and font
representation. Unicode is a well-defined standard, so it would seem to be a simple job to display
the characters. It is not, however, for a number of reasons:

o First, if the Framework were to require that all of Unicode’s 65,535 characters (zero is used as a
terminator) to be carried, it would occupy around 2.5 MB (at 16x19 font noncompressed).

e Second, Unicode characters are usually presented in variable pitch fonts. If we simply decided
that all characters were the same width, a "1" character and a complex logographic glyph would
take the same width. This size would make it very hard to read the narrow characters and limit
the number of narrow characters (Latin characters, for example) to about half of what normally
fits on a row of text.

o Third, we need to avoid duplicating forms (internally) simply because we need to carry more
than one language. Forms can require a fair amount of storage themselves. Further, consistency
among forms for different languages should reduce errors.

Limiting Glyphs in Firmware Volumes

Strings in the Framework environment can be presented in differing environments with very
different limitations. The most constrained environment is in the DXE and BDS spaces prior to
discovery of a boot device with a system partition. The main limitation in this environment is
storage space. If unexpected strings could be displayed before a system partition was available, the
Framework would have to store glyphs for all characters in a Unicode font. Presumably, the system
partition will have all glyphs available.

The benefit that a relatively closed environment such as DXE or BDS provides is that, with some
careful user interface design, the number of unexpected characters that the system could be called
on to display can be limited to a manageable number. By knowing what strings we are going to
display, we can limit the number of glyphs we are required to carry.

Version 0.91 April 2004 19

intel
Human Interface Infrastructure Specification Draft for Review '

It is also clear that, with careful design, we can support a system where a limited number of strings
are displayed before a system partition is available, while still enabling the input and display of
large numbers of characters/glyphs using a full font file stored on the system partition. In such a
situation, the designer must be careful to ensure that enough information can be displayed and that
the configuration can be changed using only the information found in firmware volumes (FVs) to
obtain access to a satisfactory system partition.

Unicode

20

Unicode (as defined by UTF-16) has some interesting issues.

Unicode does not distinguish between characters of various widths, which is a reasonable concept if
one has enough storage space to do font scaling but is a mess for the preboot environment. The
solution here is to limit fonts to two widths and one height.

Unicode defines a private use area of 6500 characters that may be defined for local uses. Suggested
uses include Egyptian Hieroglyphics; see Developing International Software For Windows 95* and
Windows NT* for more information. Use of this area is prohibited for the Framework because a
centralized font database that is accumulated from the various drivers (a valid implementation)
would end up with collisions in the private use area and these characters generally could not be
displayed in an XML browser.

UTF-16 defines surrogate areas (see page 56 in Professional XML) that allow for expanded
character representations of the 16-bit Unicode. These character representations are very similar to
Double Byte Character Set (DBCS)—2048 Unicode values split into two groups (D000-DBFF and
DCO0-DFFF). They are defined to have 16 additional bits of value to make up the character, for a
total of about one million extra characters. Surrogate characters are not legal XML and are not
supported in the Framework.

Unicode uses the concept of a nonspacing character. These glyphs are used to add accents, and so
on, to other characters by what amounts to logically OR’ing the glyph over the previous glyph.
There does not appear to be any predictable range in the Unicode encoding to determine
nonspacing characters, yet these characters appear in many languages. Further, these characters
enable spelling of several languages including many African languages and Vietnamese.

April 2004 Version 0.91

intel

Draft for Review

Localization Issues

Localization is the process by which the interface is adapted to a particular language. The table
below discusses issues with localization and provides possible solutions.

Table 2-1. Localization Issues

Design Discussion

Issue

Directional
display

Punctuation

Line breakage

Date and time

Example

Right to left printing for Hebrew.

Punctuation is directional. A

comma in a right-to-left

language is different from a

comma in a left-to-right
language.

Rules vary from language to

language.

Most Europeans would write
July 4, 1776, as 4/7/1776 while
the United States would write it
714/1776 and others would write

1776/7/4. The separator

characters between the parts of
both date and time vary as well.

Solution

Printing direction is a

function of the language.

Character choice is the
choice of the author or
translator.

Little or no formatting is
performed by the

Framework preboot GUI.

Generally left to the
creator of the user
interface.

Comment

The display engine may
or may not support all
display techniques. If a
language supports a
display mechanism that
the display engine does
not, the language that
uses the font must be
selected.

The runtime display is up
to the runtime browser
and is not defined here.

Numbers 12,345.67 in one language is Print only integers and This solution is
presented as 12.345,67 in do not insert separator becoming accepted
another. characters. around the world as

more people use
computers.
Version 0.91 April 2004 21

intel
Human Interface Infrastructure Specification Draft for Review '

User Input

22

To limit the number of required glyphs, we must also limit the amount and type of user input.
We can generally expect user input to come from the following two main types of devices:

e Keyboards
e Mouse-like pointing devices

Input from other devices, such as limited keys on a front panel, can be handled in two manners:

e Treat the limited keys as special-purpose devices with completely unique interfaces.
e Programmatically make the limited keys mimic a keyboard or mouse-like pointing device.

Pointing devices require no localization. They are universally understood by the subset of the world
population we are addressing. For example, if someone does not know how to use a mouse or other
pointing device, it is probably not a good idea to allow that person to change a system’s
configuration.

Keyboards, on the other hand, are localized at the keycaps but not at the electronics. In other words,
a French keyboard and a German keyboard might have very different keys but there is no way for
the software inside the keyboard, let alone the software in the system at the other end of the wire, to
know which set of keycaps are installed.

The general solution proposed here is to use the keys that are common between keyboards and to
ignore the language-specific keys. Keys that are available on USB keyboards in preboot mode
include the following:

e Function keys (F1 - F12)

e Number keys (0-9)

o "Upside down T" cursor keys (the arrows, home, end, page up, page down)

e Numeric keypad keys

e The Enter, Space, Tab, and Esc keys

e Modifier keys (shifts, alts, controls, Windows*)

e Number lock

The scan codes for these keys do not vary from language to language. These keys are the standard
keys used for browser navigation although most end-users are unaware of this fact. Help for form-
entry-specific keys must be provided to enable a useful keys-only interface. The one case where
other, language-specific keys may be used is to enter passwords. Because passwords are never
displayed, there is no requirement to translate scan code to Unicode (keyboard localization) or scan
code to font.

Additional data can be provided to enable a richer set of input characters. This input is necessary to
support features such as arbitrary text input and passwords.

April 2004 Version 0.91

intel
) Draft for Review Design Discussion

HTML and IFR

The Framework forms, or Internal Form Representation (IFR), are data structures that are used to
describe models of menus of input. The data structures define a language that is used to describe the
allowed user input.

IFR is loosely based on HTML and its more recent equivalent, XHTML. IFR differs from HTML in
several important ways, as listed in the table below.

Table 2-2. Differences between HTML and IFR

HTML IFR

Text is interspersed with meta-commands. Supports text as a separate command. This support
makes IFR easier to localize because IFR refers to
strings by token to use the rest of the localization

support.
Meta-commands are textual (“<input type=radio...”). Commands are binary.
Supports a rich set of commands. Set of commands is mainly a subset.
For most semantic checking and visibility control, Uses internal commands for the specialized semantic

requires the designer to resort to a scripting language = checking that it supports.
such as Java* or JavaScript*.

One of the design goals of IFR is that it be fairly easily translated into HTML.

(Note: The entire section “Results Routing’ was deleted in the 0.91 version.)

Version 0.91 April 2004 23

intel
Human Interface Infrastructure Specification Draft for Review '

Human Interface Overview

Human Interface Introduction

The figure below depicts the model that is used inside the Framework to manage human interface
components.

Presentation
Drivers

Remote XML
driver translator

T Cu—
%Ue
AA 4

Local Database <«——» HIl Protocols Form Browser Protocol

N v
$ @‘f’ Form Callback Protocol

Setup

Other
protocol

Other
N

Figure 2-1. Managing Human Interface Components

(Note: The figure above changed in the 0.91 version.)

Human interface data is divided into the following:

e Input
e Fonts
e Strings
e Forms

Each of these is represented by a variable length data structure known as a package or simply a
pack. Each package starts with a header, which is described in Package Header.

The definition of package-specific protocols is left for later in this section, after the packs that make
up a package are introduced. Each of the various packs supports the separate registration of the
pack type. The pack also has a package registration mechanism that allows for bulk registration.

See Code Definitions for the definitions of all human interface—related code that is referenced in
this chapter.

24 April 2004 Version 0.91

intel
) Draft for Review Design Discussion

Package Header

The package header starts the variable-length data structure that contains each of the human
interface data components. The package header is defined in Package Header in Code Definitions.

Package Manipulation

Package lists are expected to be separate sections that are stored in the same files as driver
executables, although this implementation is not required.

Package lists are submitted to the EFI Human Interface Infrastructure (HII) Protocol to be stored in
a database. Different packages inside the list are handled differently. Font packages are integrated
into existing font data, expanding the available font characters. String and form information is
handled by assigning a handle to the "subdatabase." These handles are then used to refer to the
strings by the drivers themselves, as well as other drivers that make use of the database information.

Packages Definition

The packages that are passed to the HII database are self describing and their definition is intended
to be extensible so that future types of packages can be added seamlessly. Type
EFI HIIT PACKAGES is defined in Packages Definition in Code Definitions.

Human Interface Infrastructure (HIl) Protocol

The Human Interface Infrastructure Protocol (EF1_HI1 PROTOCOL) manages the structures in
the HII database. A number of functions are defined under EF1_HI1_PROTOCOL to manipulate
the data in the HII database. Type EF1_HI1_PROTOCOL is defined in Human Interface
Infrastructure (HII) Protocol in Code Definitions.

Version 0.91 April 2004 25

intel
Human Interface Infrastructure Specification Draft for Review '

Font Package

Introduction

This section describes the general format for the storage of fonts. A font package consists of a
header and two types of glyph structures—standard-width (narrow) glyphs and wide glyphs.

Glyph Sizes

There are a number of factors to consider when choosing a standard glyph size:

e The glyphs must be readable by a large percent of the population in a standard screen format.
Currently this format is expected to be 800x600 pixels.

o The glyphs should not be too squat or elongated.

e The maximum glyph width must be large enough to accommodate logographic characters. This
width is around 15 or 16 pixels in either dimension.

o The glyphs must not be so large that they use a large amount of space in the firmware device.

e [t would be nice if one of the dimensions were a multiple of 8 so that the characters would fit in
the byte-wide storage of the target architecture.

Given these factors, the preferred dimensions are 8x19 for narrow glyphs and 16x19 for wide
glyphs. These dimensions yield about 31 lines of 100 narrow characters on an 800x600 screen.

The representation is designed to be extensible to other formats as needed in the future.

Glyph Representation

There are two sizes of glyphs. There is one structure (EF1 _NARROW GLYPH,
EF1_WIDE_GLYPH) for each glyph size. See Glyph Representation in Code Definitions for the
definitions of these two structures.

Strings

Introduction

26

A string package defines a list of strings in a particular language or related set of languages.
Numerous string packages may exist in a single package to implement support for multiple
language sets.

A string is generally a C-style Unicode string, although it may contain special EFI-specific
formatting characters as well.

A string is referred to by a STRING_TOKEN, which is a constant usually assigned during the build
process. A STRING_TOKEN is contained in a variable of type STRING _REF. The difference in
the two makes it simpler to determine if an element is referring to a string or a container for a
reference to a string, which makes implementing the build tools easier.

April 2004 Version 0.91

intel
) Draft for Review Design Discussion

Internal String Representation

This section examines the internal storage format of strings and indicates how this format is used
for the functions that enable programs to extract strings and parts of strings once a string package
has been handed off to be managed. It uses the following text (from Alice in Wonderland) in its
examples:

Twinkle, twinkle, little bat!

How I wonder what you’re at!

Up above the world you fly,

Like a tea-tray in the sky.

Internal storage would look like:
Twinkle,<cr>twinkle,<cr>little<cr>bat!<cr><If>How<cr>l<cr>. ..

where <Cr> indicates carriage return and <l ¥> indicates line feed. English text can be broken at

any space. Text in other languages may or may not be broken at spaces. Assume that English had a

rule that spaces before words starting with w are nonbreaking. The representation would then be:
... <cr>bat!<cr>How<cr>Il<sp>wonder<sp>what<cr>you’re<cr>...

The partial string interface treats nonspacing, separated words as single words.

As noted above, some languages support narrow or wide characters and have commonly used
stylistic guidelines for how narrow and wide glyphs are intermixed. In particular, most languages
have adopted the rule that characters should be the same width. For example, an 1 would typically
be a narrow character but would be printed as a wide character if the characters surrounding it were
wide. Unicode does not have the concept of narrow or wide characters, so it is generally left up to
sophisticated operating system (OS)—present drivers to determine the applicability of the width of
characters. Due to the limited size available to many of the target environments, the EFI
environment cannot rely on such a rich heuristic mechanism. Instead, it supports the use of special
<narrow> and <wide> characters (defined later in Code Definitions) that indicate the preference for
character widths. In essence they define the search pattern—if in the default <narrow> mode, the
narrow characters are searched first; if in <wide> mode, the wide characters are searched first.

Consider the case of a firmware-based, 80x25-line, character-oriented presentation driver that has
split the screen into three roughly equal columns of 26 characters each. The first column is for
prompts, the second is for the currently selected option, and the third column is for help text.
Assume the top and bottom two lines are used for other purposes. This setup means that the help
text can occupy 26x21 lines. The parameters to the extract functions would then indicate a
StartWordIndex of 0 (first word), a NumberOfLines of 21, and a LineWidth of 26. The
GetLine() function fills each line with as many space-separated, nonsplitting "words" as can be
fit on each line before moving to the next line, adding spaces between each. "Words" that cannot fit
on a line alone are split so that the line width will align most closely to the maximum line width but
not expand over.

GetString() has options to extract the raw string (as described above) or with spaces in the
normal <cr> locations and with having special overrides removed.

In the case of translating the text to HTML, it is assumed that the browser can handle its own line
breaks. In this case, the StartWordIndex would be 0, the NumberOfLines would be 0 (all
lines), and the LineWidth would be 0 (infinite), thus generating lines as long as the text allows.

Version 0.91 April 2004 27

intel
Human Interface Infrastructure Specification Draft for Review '

Form Packages

Goals

28

During the boot of a Framework-based system, the following types of data might be displayed and,
hence, must be supported by the user interface:

Graphical displays—in particular, logos that are displayed during boot to provide a pleasant
end-user experience and advertising.

Text, such as a copyright, on a power-on screen.

A query and response dialog during boot. These queries usually take the form, "This error was
found. Press a key to continue." It is typical to switch to a text screen from the logo screen to
display such information.

Setup, which provides several interface types itself:

— Columnar data, such as
"Processor Speed 2.4 GHz"
and
"Memory Size 512 MB"

— Subtitles, such as "Ports," "Power Management," and so on
— Questions, including the following:

e A prompt, such as "Parallel port address"

e Question-specific help text

e Some mechanism for actual input, including the following:

"One-of" selection (like a radio button): The most common input mechanism,
where the user must select one item from a menu of options.

— Check box: The user can select or clear an option individually. It is commonly
used to enable or disable a mode. When grouped, check boxes support multiple
option sets where more than one option can be selected simultaneously.

— Decimal number within a range.
— Password.

— Generalized character strings ("text boxes"). Passwords are, in fact, generally
treated as a subset of strings in HTML.

This list does not actually define user-interface issues. For example, help text is generally necessary
whether it is displayed along with the question or only in response to a keystroke. Keys help (the
functions associated with individual keys) are not defined because they are user-interface specific.

It is important to define the boundary between what is provided internally and what is a part of a
user interface. For example, are radio buttons required with "one-of" choices, or are drop-down
combo boxes also legal? Are the number of choices limited for a "one-of" question? A developer
might want a "one-of" button to input the day of the month. Thirty-one radio buttons is excessive
but a drop-down combo box with a slider (as used in Font Selection in Microsoft Word*) is not.

The effort becomes more complex if one attempts to handle interrelated questions. It is common for
one question to be meaningful only if a particular option is selected on a different question. Forms
languages such as HTML are not rich enough to express this relation and, as such, do not provide
sufficient hints for the browser to "gray-out" the secondary question if a different option is chosen

April 2004 Version 0.91

intel
) Draft for Review Design Discussion

in the primary question. Typical HTML Web forms are primitive enough that this issue rarely
arises. Unfortunately, the questions in Setup tend to reflect the underlying interrelationship of the
hardware and, as such, tend to create interrelated questions.

IFR supports mechanisms to describe the default values for questions. As in HTML, it is up to the
presentation engine ("browser") to provide an interface to allow these values to be set.

Different browser environments have different facilities and mechanisms for causing the form to be
submitted. A mechanism to perform this task is required by each IFR browser but left up to the
browser for implementation.

The syntax of the output in XHTML is a sequence of UNICODE name=value pairs separated by
the "&" character. IFR supports a subset of this easily parsed standard mechanism to encode its
results as well. The mechanism encodes identifier, offset, and width information in the name part.
The value part is typically decimal integers, except for fonts and strings.

Forms and Form Sets

An IFR is used to represent forms in the Framework. This representation is designed so that it can
be interpreted as is or expanded easily into XHTML.

In most markup languages, a form is submitted to a server for processing when the user completes
it. In many of the "use" cases that IFR targets, the equivalent of the server is not available. For this
reason, the forms package can contain one or more forms.

Semantics and Tag Structures

Form Packages and Scoping

The form is the basic encapsulation of configuration data. A form package consists of one or more
forms. The form package provides scoping for identifiers in the forms, including <name-id> and
string tokens in particular. The intent is for the driver or drivers creating a form set to be
cooperative and to avoid the definition of these identifiers from being duplicated unexpectedly.
Different form packages are in essence invisible to each other. For example, one form set cannot go
to another form set.

The first form in the form set is known as the parent form. All other forms are child forms. When
interpreting forms, it is up to the interpreter to create a "main page" through which all parent forms
from all form sets are accessible. Child forms are accessed using hypertext references (using the
"go-to" operation defined in Code Definitions) from the parent page or other child pages. The
interpreter is responsible for creating references from the parent page back to the main page and for
retaining a "back" list of previously visited pages. Other exits from child pages must be through
explicit IFR hypertext references.

Note that it is legal for a form package to contain forms that cannot be reached from the parent
form. These forms may be used in more dynamic cases by drivers to take advantage of the user
interface capabilities that are already useful for configuration in the system.

Version 0.91 April 2004 29

intel
Human Interface Infrastructure Specification Draft for Review '

Forms

Forms must be position independent because they can be copied from place to place. Further,
position independence of the parts of the forms (operations) enables insertion of new data between
precompiled form text.

Device Descriptions

A device description operation allows a form or forms to be associated with its corresponding
firmware. The format of the contents of <dev-desc-data> are defined in the Intel® Platform
Innovation Framework for EFI Device Description Specification.

Titles, Subtitles, and Text: <subtitle>, <text>

Each form must have a title. Subtitles can be placed throughout the forms to provide visual
separation of the elements. Text may be inserted as well.

The exact use of the title, subtitle, and text elements is defined by individual presentation drivers
(the "browsers" for the language) as is the presentation to the user. It is suggested that subtitle be
translated into HTML <h3>.

® noTE

Unlike HTML, text has its own opcode (tag). The Text Tag exists in IFR (but not in HTML) to
facilitate localization of text for different languages.

Questions

Questions
The intent of a question, from a driver’s perspective, is to associate an ID with a value.

Experience has shown that very few types of questions are required to obtain the information that is
necessary to configure a system. The parameters for question operations follow a standard form.
The first byte is the opcode. This byte is followed by an ID that serves as an internal mechanism to
refer to the question and as a part of the results generation. String tokens to provide a prompt (a
short description of the question) and context-sensitive help text are then provided. Note that there
is no way to provide "keys" help as that is the responsibility of the presentation driver.

30 April 2004 Version 0.91

intel
) Draft for Review Design Discussion

The following subsections describe the different types of question tags. The different types of
question tags are as follows:

e One-of

e Checkbox: <checkbox>

e Numeric: <numeric>

e Password: <password>

e Hidden: <hidden>

e Ordering: <list>

e Hypertext: <goto>

See Internal Form Representation (IFR) Language Syntax Definition in Code Definitions for
definitions if these tags.

One-Of
HTML has several one-of types of tags, including <input type=radio...> and <select...>.

The most commonly used type is equivalent to an HTML radio button where the user is asked to
pick one item from a series of items. In IFR, this model is known as a one-of selection. Flags that
are associated with each option are split between standard definitions and user definitions. The two
standard definitions are "default" and "current selection."”

Checkbox: <checkbox>
The HTML tag for the checkbox type is <input type=checkbox...>.

The checkbox type is used in two ways. The first is as an equivalent to an "on/off" radio button.
The second is as a series of checkboxes to present the equivalent of a radio button except that more
than one item may be checked at a time.

Numeric: <numeric>
The numeric type has no exact analogy in HTML. The closest type is <input type=text...>.

Numeric questions allow for the input of bounded positive (or 0) decimal numbers. The minimum
and maximum values are specified, as well as a step value. The step value is used to allow the
browser to do more complete validation in cases where legal input values are not monotonically
increasing. For example, consider a case where only odd values were required (between 1 and 15,
for example). The minimum value would be 1, maximum of 15, and the step would be 2. A number
n is valid if:

(minimum <= n && n<= maximum)

Version 0.91 April 2004 31

In

a
Human Interface Infrastructure Specification Draft for Review e '

Password: <password>

Password questions allow for the input of passwords. Many browsers (mainly remote and OS-
present) will not be secure enough for passwords. It is up to the presentation driver to edit out
password operations in these cases. The encoding mechanisms are TBD.

Hidden: <hidden>

Hidden questions are questions that have no options and are the equivalent of constants. The
browser must hand the ID and value back as with a normal question. The hidden construct is from
HTML and allows the generating driver to send a message to the driver responsible for processing
the output of the browser.

Ordering: <list>
HTML has no analogous <list> tag.

This input type enables ordered input from a list of choices. The construct is intended to support
unique lists where a choice may appear in the list only once (e.g. a list of boot devices), or lists
where a choice may appear several times. The syntax is designed to enable a number of different
visual representations.

The question format consists of the following:

e A header
e A list of choices
e A list of containers

Each container has a reference to a choice.

Header
The header contains the usual header information—ID, prompt, and help text. The ID does not end
up being output. The flags that are defined include the following:
e Unique: Each choice may be used at most once.
e NoNull: All containers must be filled with a selection.

e A "null choice" value rounds out the header. This value is legal input for a container if the
NoNull flag is off.

List of Choices

Each choice consists of a string reference and a value. The string reference is used to describe the
choice and the value is the value to put in the container if the choice is selected. A null string ends
the choice list.

32 April 2004 Version 0.91

intel
) Draft for Review Design Discussion

List of Containers
Each container consists of the following:

e String reference: Describes the container (usually like "third boot option")
o |d-offset-width: Defines a resulting name that corresponds to the order
e Default value: The initial value for the choice

The presentation driver should not evaluate uniqueness while the user is still changing the
configuration of a particular question.

Examples
Following is an example of a text display (character oriented):
Names for Kings (0 = None)

. Harold

. Andrew

. Mark

. Alfred

. George

. Ethelred

. Wilhelm

~N N B~ W~

First Name: [6]
Second Name: [2]
Third Name: [3]
Fourth Name: []

This text display might be represented with the following syntax (with syntactic sugar and with
actual strings substituted for string references to improve readability):

Version 0.91 April 2004 33

intel
Human Interface Infrastructure Specification Draft for Review '

List id, "Names for Kings', "Help™, O, Unique
choices
“Harold”, 1
“Andrew’”, 2
“Mark”, 3
“Alfred”, 4
“George”, 5
“Ethelred”, 6
“Wilhelm”, 7
containers
idl, “First Name:”, 1
id2, “Second Name:", O
1d3, “Third Name:”, O
id4, “Fourth Name:”, O
EndList

Given the above example, the results would be - . . &1d1=6&1d2=2&1d3=3&1d4=0&. . .

Hypertext: <goto>
The HTML tag for the go-to type is <a href...>.

The go-to command implements the ability to refer to a form from another form. The parameter is a
form identifier, meaning that the go-to may only reference another form and not a place inside the
form. In particular, the go-to reference may not be a label. If nothing else, this design eliminates
confusion with jumping into the middle of nesting constructs inside IFR forms.

Image
The HTML tag for the image type is <image align=left src=...>.

This type inserts an image into the form. If the form cannot display graphics, it may substitute the
<text-only-string-ref> tag instead. Text is not wrapped around the image.

Background
The HTML tag for the image type is : <body background=...>.
As in HTML, the background is tiled across the full screen. Text scrolls over the background.

34 April 2004 Version 0.91

intel
) Draft for Review Design Discussion

Visibility Control: <grayout>, <suppress>
There is no HTML analogy for visibility control.

HTML does not support the ability to control whether a particular part of a form should be made
visible to the user or "grayed out" (printed in a muted tone or made invisible).

Visibility control is implemented via the grayout construct. This construct is block structured and
analogous to an "if" statement in C. The hide construct has an opcode and a Boolean expression.
These are followed by a series of other operators and finally a termination opcode. If the Boolean
expression is true, the encompassed operations should be grayed out. If it is false, they should be
made visible.
grayoutif serport ==
oneof id=serport2 prompt=sp2str help=sp2helpstr

The suppress operation is similar to the hide construct except that the enclosed items must not be
displayed.

Neither suppress nor grayout affect the output of the results.

Boolean Expressions

The Boolean expressions (involving only true and false) are presented internally in Reverse Polish
Notation (RPN [postfix]) form. The Boolean operators are limited to "and," "or," and "not." The
following three primitives are used to query the current state of the configuration:

e |D/Value compare: The current configuration ("value" in HTML) of the question
corresponding to the ID is compared to the value operand. The primitive results in TRUE if they
are the same and FALSE otherwise. In the case of a "many-of" instance, if the value is selected
(even if other values are also selected), the primitive returns TRUE. (By "returns," we mean
"evaluates to" or, from the common implementation method, "pushes on the stack.")

e |D/List compare: The current value of the question corresponding to the ID is compared to a
list of values. If the value is in the list, TRUE is returned. If not, FALSE is returned. This
operation is valid only on "one-of" and numeric questions. The list itself consists of a UINT16
count followed by that many UINT16 values.

o |ID/ID compare: The current values of the questions corresponding to the two IDs are
compared. If the questions are of different type, FALSE is returned. This value actually is not
really valid, but it is a clean way to recover. If the values are identical, TRUE is returned.
Otherwise FALSE is returned. In the case of a "many-of" instance, all values must correspond.
Those values selected in one must be selected in the other and those not selected in one must
also be not selected in the other.

Version 0.91 April 2004 35

intel
Human Interface Infrastructure Specification Draft for Review '

Using Grayed-Out Parts of a Form

There are two main reasons that an area might be grayed out:

e The driver might support a subset of the options available on a particular system.
o The value of one question has a role in determining if another question should be grayed out.

In the first reason, the driver might sense which subset a particular system has and need to display
only those options. This action can be accomplished by editing the form dynamically or by simply
modifying a hidden question value and using a hide operation to do an ID/value comparison on the
hidden question.

The second reason, when the value of one question has a role in determining if another question
should be grayed out, is more familiar to the user. This issues is common in OS-present
applications as well. Unfortunately, HTML punts on grayed-out control, relying on JavaScript* or a
similar tool for assistance. Consider two "one-of" questions. The first asks if the onboard USB
should be enabled or disabled. The second asks if the onboard USB should be searched for boot
devices at power up. If the onboard USB is disabled, the second question does not make sense. This
case could be resolved using the provided primitives (assuming some syntactic sugar), as shown in
the following example:
OneOf USB_EN_DIS EnDisString, EnDisHelpString
EnabledString, 1, Default+Selected
DisabledString, 0, O
EndOneOf
GrayOutlf USB_EN_DIS ==
OneOf 1d=USB_FIND_BOOT prompt=
FindBootString help=FindBootHelpString
EnabledString, 1, Default+Selected
DisabledString, 0, O
EndOneOf
EndGrayout

Consistency Checking

36

As well as controlling visibility, questions have other effects on each other. Consider three numeric
questions: year, month, day. The range for month is 1 to 12 and the range for day is 1 to 31. The
problem is that June 31 is not valid, nor is February 29, 2003, although February 29, 2004, is
acceptable.

IFR addresses such issues with consistency expressions. Consistency expressions are Boolean
expressions with associated strings. If the expression becomes TRUE, it indicates that an
inconsistency has occurred. The associated string is a useful example of a pop-up indicating the
issue.

Using the date as an example (and again with syntactic sugar):
Numeric 1d=YEAR prompt=YearString help=YearHelpString start=2000
\
end=2039 step=1 default=2001
Numeric id=MONTH prompt=MonthString help=MonthHelpString start=1
end=12 \

April 2004 Version 0.91

intel
) Draft for Review Design Discussion

Step=1 default=1
Numeric id=DAY prompt=DayString help=DayHelpString start=1 end=31
\
Step=1 default=1
Inconsistent IT=(DAY == 31 && MONTH == [2, 4, 6, 9, 11])
text=BadDayString
Inconsistent 1f=(DAY == 30 && MONTH == 2) text=Feb30String
Inconsistent ITf=(DAY == 29 && MONTH == 2 && \
IYEAR == [2004, 2008, 2012, 2016, 2020, 2024, 2028,
2032, 2036]),
text=LeapYearString

The year ranges from 2000 to 2039, the month from 1 to 12, and the day from 1 to 31. Some
months have only 30 days and February (MONTH == 2) has only 28 or 29. The Var/List operation
(syntactically cleansed here using the example "MONTH == [2, 4, ...")is particularly useful
here.

Dynamic Data

Labels

Most of the contents of forms can be created at build time. Some, however, cannot be defined
statically. For example, the list of boot devices cannot be known ahead of time.

The mechanism that is defined for inserting new form operations into an existing form is to use the
label operation. The driver must create IFR operations on the fly. A function allows this dynamic
data to be inserted into the driver’s IFR before a given label.

Advanced Operations (Optional)

Advanced Operations (Optional)

The operations described thus far define the minimum level of IFR to be supported on all compliant
systems. The following operations are optional. Implementations of IFR browsers that do not
support these operations should ignore them (skip over them using the length field).

String Input

<string-input> ::= <string-op> <question-header> <min-length> <max-length>

String input is optional as it is difficult to support localized general-purpose keyboard input. Strings
up to <byte-width> (255 characters) are supported so <min-length> and <max-length>
are bytes.

No inconsistency checking operations are supported on strings.

Version 0.91 April 2004 37

intel
Human Interface Infrastructure Specification Draft for Review '

Keyboard Layout

Keyboard Mapping

38

The keyboard mapping that is defined in EFI is loosely based on ISO 9995. The naming mechanism
is based on the figure below. The keys that are highlighted in brown are the keys that almost all
keyboard layouts use for customizations. However, customization does not necessarily mean that
all the keys are different. In fact, most of the keys are likely to be the same. When modifying the
mapping, one can normally reference the keys in brown as the likely candidates for which to create
modifications.

) EEE)(E F)E)(E)(R) (@)m)m)n) Rudwape

ko |[E1 (B2 (B3 (B [Bs |[6 |[E7 |[Be [B0 [Ene)(Em1 E].Im (s Jand eevp) el s)+)
1 (02 |3 |« |38 |(e |[07 | (e | (0o | pae [onr| (312 313* | (pa)(Ena)fesom) .@
[enffe2 l[ezifca j[es] ee [cr]fes || o [cno]fem |ieaes) EIE@
stirt | Bo* | 51 |[B2 |[B3 | Ba |[Bs || B | m'.ns'.jnn' Bl | EB
;.u [Space Bar (a2 |{a |[as . .-. “

EE

i

H

Figure 2-2. Keyboard Layout

Instead of referencing keys in hardware-specific ways such as scan codes, the Framework defines
an EF1 KEY enumeration that allows for a simple way to reference this hardware abstraction. Type
EF1_KEY is defined in Code Definitions in EFI_HI1 PROTOCOL . GetKeyboardLayout().
It also provides a way to update the keyboard layout with a great deal of flexibility. Any of the keys
can be mapped to any Unicode value or control code value.

When defining the values for a particular key, there are six elements that are pertinent to the key:

Key name: The EFI_KEY enumeration defines the names of the above keys.

Unicode value: Defines the Unicode value (if any) of the named key.

Shifted Unicode value: Defines the Unicode value (if any) of the named key while the shift
modifier key is being pressed

Alt-GR Unicode value: Defines the Unicode value (if any) of the named key while the Alt-GR
modifier key (if any) is being pressed.

Shifted Alt-GR Unicode value: Defines the Unicode value (if any) of the named key while the
Shift and Alt-GR modifier key (if any) is being pressed.

Modifier key value: Defines the nonprintable special function that this key has assigned to it.

Under normal circumstances, a key that has any Unicode definitions generally has a modifier key
value of EF1_NULL_MODIFIER. This value means the key has no special function other than the
printing of a character. An exception to the rule is if any of the Unicode values have a value of
OxFFFF. Although rarely used, this value is the one case in which a key might have both a printable
character and an active control key value.

April 2004 Version 0.91

intel
) Draft for Review Design Discussion

An example of this exception would be the numeric keypad’s insert key. The definition for this key
on a standard US keyboard is as follows:

Key = EfiKeyZero
Unicode = 0x0030 (basically a “07)

ShiftedUnicode = OxFFFF (the exception to the rule)
AltGrUnicode = 0x0000

ShiftedAltGrUnicode = 0x0000

Modifier = EFI INSERT MODIFIER

This key is one of the few keys that, under normal circumstances, prints something out but also has
a special function. These special functions are generally limited to the numeric keypad; however,
this general limitation does not prevent someone from having the flexibility of defining these types
of variations.

Modifier Keys

Modifier keys are defined to allow for special functionality that is not necessarily accomplished by
a printable character. Many of these modifier keys are flags to toggle certain state