
 Draft for Review

Intel® Platform Innovation Framework
for EFI

IDE Controller Initialization Protocol
Specification

Draft for Review

Version 0.9
August 9, 2004

IDE Controller Initialization Protocol Specification Draft for Review

ii August 2004 Version 0.9

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Except for a limited copyright license
to copy this specification for internal use only, no license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted herein.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of information
in this specification. Intel does not warrant or represent that such implementation(s) will not infringe such rights.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

This document is an intermediate draft for comment only and is subject to change without notice. Readers should not design
products based on this document.

Intel, the Intel logo, and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2002–2004, Intel Corporation.

Intel order number xxxxxx-001

 Draft for Review

Version 0.9 August 2004 iii

Revision History
Revision Revision History Date

0.9 First public release. 8/9/04

IDE Controller Initialization Protocol Specification Draft for Review

iv August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 v

Contents

1 Introduction .. 7
Overview ... 7
Conventions Used in This Document.. 7

Data Structure Descriptions ... 7
Protocol Descriptions ... 8
Procedure Descriptions.. 8
Pseudo-Code Conventions .. 9
Typographic Conventions... 9

2 Design Discussion ... 11
IDE Controller Initialization Protocol Overview.. 11
IDE Controller Terms .. 11
IDE Controller Initialization Protocol References .. 12
Background... 13

IDE Requirements .. 13
Simplifying the Design of IDE Drivers .. 15
Configuring Devices on the IDE Bus.. 16

Sample Implementation for a Simple PCI IDE Controller.. 17

3 Code Definitions... 21
Introduction ... 21
IDE Controller Initialization Protocol.. 21

EFI_IDE_CONTROLLER_INIT_PROTOCOL .. 21
EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo().................................. 24
EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase() 26
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData() .. 29
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() 34
EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode()................................... 38
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()... 40

Figures
Figure 2-1. PATA Controller... 14
Figure 2-2. AHCI SATA Controller ... 15

Tables
Table 2-1. Drivers Involved in Configuring IDE Devices... 16

IDE Controller Initialization Protocol Specification Draft for Review

vi August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 7

1
Introduction

Overview
This specification defines the core code and services that are required for an implementation of the
IDE Controller Initialization Protocol of the Intel® Platform Innovation Framework for EFI
(hereafter referred to as the "Framework"). This protocol is used by an IDE bus driver to program
an IDE controller and to obtain IDE device timing information. This protocol abstracts the
nonstandard parts of an IDE controller. This protocol is not tied to any specific bus.
This specification does the following:
• Describes the basic components of the IDE Controller Initialization Protocol
• Provides code definitions for the IDE Controller Initialization Protocol and other IDE-

controller-related type definitions that are architecturally required by the Intel® Platform
Innovation Framework for EFI Architecture Specification

Conventions Used in This Document
This document uses the typographic and illustrative conventions described below.

Data Structure Descriptions
Intel® processors based on 32-bit Intel® architecture (IA-32) are “little endian” machines. This
distinction means that the low-order byte of a multibyte data item in memory is at the lowest
address, while the high-order byte is at the highest address. Processors of the Intel® Itanium®
processor family may be configured for both “little endian” and “big endian” operation. All
implementations designed to conform to this specification will use “little endian” operation.
In some memory layout descriptions, certain fields are marked reserved. Software must initialize
such fields to zero and ignore them when read. On an update operation, software must preserve
any reserved field.
The data structures described in this document generally have the following format:

STRUCTURE NAME: The formal name of the data structure.

Summary: A brief description of the data structure.

Prototype: A “C-style” type declaration for the data structure.

Parameters: A brief description of each field in the data structure prototype.

Description: A description of the functionality provided by the data structure,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this data structure.

IDE Controller Initialization Protocol Specification Draft for Review

8 August 2004 Version 0.9

Protocol Descriptions
The protocols described in this document generally have the following format:

Protocol Name: The formal name of the protocol interface.

Summary: A brief description of the protocol interface.

GUID: The 128-bit Globally Unique Identifier (GUID) for the protocol
interface.

Protocol Interface Structure:
A “C-style” data structure definition containing the procedures
and data fields produced by this protocol interface.

Parameters: A brief description of each field in the protocol interface
structure.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used in the protocol
interface structure or any of its procedures.

Procedure Descriptions
The procedures described in this document generally have the following format:

ProcedureName(): The formal name of the procedure.

Summary: A brief description of the procedure.

Prototype: A “C-style” procedure header defining the calling sequence.

Parameters: A brief description of each field in the procedure prototype.

Description: A description of the functionality provided by the interface,
including any limitations and caveats of which the caller should
be aware.

Related Definitions: The type declarations and constants that are used only by
this procedure.

Status Codes Returned: A description of any codes returned by the interface. The
procedure is required to implement any status codes listed in this
table. Additional error codes may be returned, but they will not
be tested by standard compliance tests, and any software that
uses the procedure cannot depend on any of the extended error
codes that an implementation may provide.

 Draft for Review Introduction

Version 0.9 August 2004 9

Pseudo-Code Conventions
Pseudo code is presented to describe algorithms in a more concise form. None of the algorithms in
this document are intended to be compiled directly. The code is presented at a level corresponding
to the surrounding text.
In describing variables, a list is an unordered collection of homogeneous objects. A queue is an
ordered list of homogeneous objects. Unless otherwise noted, the ordering is assumed to be First In
First Out (FIFO).
Pseudo code is presented in a C-like format, using C conventions where appropriate. The coding
style, particularly the indentation style, is used for readability and does not necessarily comply with
an implementation of the Extensible Firmware Interface Specification.

Typographic Conventions
This document uses the typographic and illustrative conventions described below:
Plain text The normal text typeface is used for the vast majority of the descriptive

text in a specification.
Plain text (blue) In the online help version of this specification, any plain text that is

underlined and in blue indicates an active link to the cross-reference.
Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification.

Bold In text, a Bold typeface identifies a processor register name. In other
instances, a Bold typeface can be used as a running head within a
paragraph.

Italic In text, an Italic typeface can be used as emphasis to introduce a new
term or to indicate a manual or specification name.

BOLD Monospace Computer code, example code segments, and all prototype code
segments use a BOLD Monospace typeface with a dark red color.
These code listings normally appear in one or more separate paragraphs,
though words or segments can also be embedded in a normal text
paragraph.

Bold Monospace In the online help version of this specification, words in a
Bold Monospace typeface that is underlined and in blue indicate an
active hyperlink to the code definition for that function or type definition.
 Click on the word to follow the hyperlink. Note that these links are not
active in the PDF of the specification. Also, these inactive links in the
PDF may instead have a Bold Monospace appearance that is
underlined but in dark red. Again, these links are not active in the PDF of
the specification.

Italic Monospace In code or in text, words in Italic Monospace indicate placeholder
names for variable information that must be supplied (i.e., arguments).

Plain Monospace In code, words in a Plain Monospace typeface that is a dark red
color but is not bold or italicized indicate pseudo code or example code.
These code segments typically occur in one or more separate paragraphs.

IDE Controller Initialization Protocol Specification Draft for Review

10 August 2004 Version 0.9

text text text In the PDF of this specification, text that is highlighted in yellow
indicates that a change was made to that text since the previous revision
of the PDF. The highlighting indicates only that a change was made
since the previous version; it does not specify what changed. If text was
deleted and thus cannot be highlighted, a note in red and highlighted in
yellow (that looks like (Note: text text text.)) appears where the deletion
occurred.

See the master Framework glossary in the Framework Interoperability and Component
Specifications help system for definitions of terms and abbreviations that are used in this document
or that might be useful in understanding the descriptions presented in this document.
See the master Framework references in the Interoperability and Component Specifications help
system for a complete list of the additional documents and specifications that are required or
suggested for interpreting the information presented in this document.
The Framework Interoperability and Component Specifications help system is available at the
following URL:
http://www.intel.com/technology/framework/spec.htm

http://www.intel.com/technology/framework/spec.htm

 Draft for Review

Version 0.9 August 2004 11

2
Design Discussion

IDE Controller Initialization Protocol Overview
This chapter discusses the IDE Controller Initialization Protocol. This protocol is used by an IDE
bus driver to program an IDE controller and to obtain IDE device timing information. This protocol
abstracts the nonstandard parts of IDE controller. This protocol is mandatory on platforms with IDE
controllers that are managed by an IDE bus driver.
See IDE Controller Initialization Protocol in Code Definitions for the definition of
EFI_IDE_CONTROLLER_INIT_PROTOCOL.

IDE Controller Terms
The following terms are used throughout this document.

AHCI
Advanced Host Controller Interface.

enumeration group
The set of IDE devices that must be enumerated as a group. In other words, if device A and
device B belong to an enumeration group and device A needs to be configured, device B must
be configured at the same time and vice versa. There are two possible enumeration groupings
for an IDE controller:

• All the devices on a channel. In this case, the number of enumeration groups is equal to
the number of channels.

• All the devices on all the channels behind an IDE controller. This enumeration grouping
may arise because multiple channels share some hardware registers or have some other
dependencies. In this case, the number of enumeration groups is 1.

The IDE controller indicates the type of enumeration group that is applicable. In case 2, the
IDE bus driver must enumerate all the devices on all the channels if there is a request to
configure a single device. In case 1, the IDE bus driver must enumerate all the devices on the
same channel if there is a request to configure a single device. Case 1 will lead to faster boot.

IDE controller
The hardware device that produces one or more IDE buses (channels). Each channel can host
one or more IDE devices.

PATA
Parallel ATA.

PATA controller
An IDE controller that supports PATA devices. Traditionally, a PATA controller supports up
to two channels: primary and secondary. Each channel traditionally supports up to two
devices: master and slave.

IDE Controller Initialization Protocol Specification Draft for Review

12 August 2004 Version 0.9

SATA
Serial ATA.

SATA controller
An IDE controller that supports the SATA driver. SATA controllers can emulate PATA
behavior. The behavior of command and control block registers, PIO and DMA data
transfers, resets, and interrupts are all emulated. In addition, SATA controllers can implement
a more modern register interface, namely AHCI. AHCI allows the host software to overcome
the limitations that are imposed by PATA emulation and to use advanced SATA features.

Some chipsets contain both PATA and SATA controllers and support a combined mode. In
combined mode, the two controllers are logically merged into one controller. The PATA
drives can appear behind the SATA controller to the host software. In such a mode, all the
PATA rules in terms of IDE timing configuration apply to SATA controllers.

IDE Controller Initialization Protocol References
The following sources of information are referenced in this specification or may be useful to you.
See References in the master Framework help system for additional references.
• ATA Host Adapter Standards, Working Draft Version 0f: http://www.t13.org/*
• Information Technology - AT Attachment with Packet Interface - 6 (ATA/ATAPI-6):

http://www.t13.org/*
• Serial ATA Advanced Host Controller Interface (AHCI) Specification, version 1.0:

http://developer.intel.com/technology/serialata/ahci.htm
• Serial ATA: High Speed Serialized AT Attachment, revision 1.0a (may also be referred to as

Serial ATA Specification 1.0a):
http://www.serialata.org/*

• Serial ATA II: Port Multiplier Specification, revision 1.1:
http://www.serialata.org/*

 Draft for Review Design Discussion

Version 0.9 August 2004 13

Background

IDE Requirements
The IDE Controller Initialization Protocol is designed to work for both Parallel ATA (PATA) and
Serial ATA (SATA) IDE controllers.
This protocol is designed with the following requirements in mind:
1. The timing registers in a PATA IDE controller are vendor specific. (See ATA Host Adapter

Standards, Working Draft Version 0f, for more information.) The programming of these
registers needs to be abstracted from the IDE bus driver.

2. The IDE Controller Initialization Protocol should also support a case where a specific channel
is disabled and/or it should not be scanned. This protocol also needs a mechanism to address
individual devices in various SATA and PATA configurations. This protocol needs to support
the following:
• A variable number of channels per controller
• A variable number of devices per channel
PATA controllers support up to two channels and each channel can have a maximum of two
devices.
SATA controllers can support standard ATA emulation. As described in the Serial ATA
Specification 1.0a, ATA emulation can either be master-only emulation or master-slave
emulation. In either case, the SATA controller appears to have one or two channels. In master-
only emulation, a maximum of one drive appears on a channel. In master-slave emulation, one
or two drives can show up behind a channel. When an SATA controller is operating in
Advanced Host Controller Interface (AHCI) mode, it can support up to 32 ports. The SATA
port that is generated by an SATA controller can host an SATA port multiplier. There can be
up to 16 SATA devices on the other side of the SATA port multiplier. In this geometry, each
SATA port that is generated by the SATA controller is treated as a channel, and this channel
can have up to 16 devices. This is done so that PATA drives as well as SATA drives can be
represented using a (Channel, Device) address pair. Note that the SATA channels work
very differently from PATA channels in the sense that the SATA channels do not have the
concept of master/slave or daisy chaining.
See Figure 2-1 and Figure 2-2 below for explanations how the devices are addressed.

3. Bus Neutral: It should be possible to use the same abstractions to support an IDE controller on
the PCI bus or some other bus. The IDE controller driver will know which controller devices it
can support. Because the majority of IDE controllers that exist today are located on the PCI
bus, all the examples will refer to PCI IDE controllers, but the protocol is not tied to the PCI
bus.

4. PCI IDE controllers can operate in native PCI mode or compatibility mode. The IDE Controller
Initialization Protocol should permit both modes.

IDE Controller Initialization Protocol Specification Draft for Review

14 August 2004 Version 0.9

5. The design should use the EFI Driver Model to support the quick boot feature. The smallest
unit of initialization is one channel. By default, the IDE bus driver initializes only the channel
on which the user-requested drive resides. The IDE Controller Initialization Protocol should
support the case where various channels share the same hardware bits and cannot be
independently enumerated. The controller driver can specify that all the channels should be
enumerated as one unit.

6. The IDE Controller Initialization Protocol must support SATA controllers that may or may not
implement AHCI register interface.

The two figures below show how the devices are addressed in various SATA and PATA
configurations. Figure 2-1 below shows a PATA controller with a maximum of two channels (thick
lines) and two devices per channel.

Figure 2-1. PATA Controller

Figure 2-2 below shows an SATA AHCI controller. The first port that is generated by the SATA
controller is connected to a port multiplier. There are 16 drives connected to the port multipliers.
These drives are addressed as drive 0–15 on channel 0. All other ports that are generated by the
SATA controller can support a port multiplier, but they are directly connected to an SATA drive.
All these devices are addressed as device 0 on the respective channel.

 Draft for Review Design Discussion

Version 0.9 August 2004 15

Figure 2-2. AHCI SATA Controller

Simplifying the Design of IDE Drivers
The IDE bus is not a general-purpose bus. The standard ATA and ATAPI command sets support
only a storage class of devices. The following design decisions can be made to simplify the IDE
Controller Initialization Protocol and the design of IDE drivers:
• The IDE bus driver is the only driver that will send commands to the ATA devices. No device-

specific drivers are needed for IDE devices because all the devices belong to the same class
(i.e., storage) and the IDE bus driver can have inherent knowledge of these commands. IDE bus
equivalents of EFI_PCI_IO_PROTOCOL and EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL
for accessing IDE devices are not required. It is possible to further simplify the design of the
IDE bus driver if it does not have to deal with the ATAPI devices. It can enumerate the ATA
and ATAPI devices and install the EFI_SCSI_PASSTHRU_PROTOCOL on ATAPI device
handles. Either way, IDE-bus-specific I/O protocols are not needed. See the EFI 1.10
Specification for the definitions of the EFI PCI I/O Protocol, PCI Root Bridge I/O Protocol, and
the SCSI Pass Thru Protocol.

• IDE devices are accessed and configured through a set of standard registers in the IDE
controller. The ATA committee is standardizing the layout of these registers. (See ATA Host
Adapter Standards, Working Draft Version 0f, for more information.) For Serial ATA (SATA)
controllers, the Serial ATA Advanced Host Controller Interface (AHCI) Specification defines a
standard register interface. Although the layout is dependent on the bus on which the controller
is located, the layout for a particular bus is fixed. As a result, the IDE bus driver can be
required to know about the register layout for buses that it chooses to support. For example, for
a PCI IDE controller, the IDE driver can access the base of the command block register for
channel 0 using the following steps:

IDE Controller Initialization Protocol Specification Draft for Review

16 August 2004 Version 0.9

1. Check bit 0 of register 0x9 (Programming Interface Code) in the PCI configuration space of
the controller to determine whether it is operating in compatibility mode or native PCI
mode. For this example, we will assume that the controller is operating in native mode.

2. Read register 0x10 (Base Address Register [BAR] 0) of the controller. Clear bit 0 of the
value that was read to get the command block base

Configuring Devices on the IDE Bus
The table below lists the various drivers that may participate in configuring the devices on the IDE
bus.

Table 2-1. Drivers Involved in Configuring IDE Devices

Driver
Follows the EFI Driver
Model? Description

IDE controller driver Yes Produces the
EFI_IDE_CONTROLLER_INIT_PROTOCOL.
Consumes the bus-specific I/O protocol.
EFI_IDE_CONTROLLER_INIT_PROTOCOL
abstracts the chipset-specific IDE controller registers and
is responsible for early initialization of the IDE controller.
Note that
EFI_IDE_CONTROLLER_INIT_PROTOCOL is
not tied to a specific bus although most IDE controllers
today are on the PCI or ISA bus.

IDE bus driver Yes Consumes the
EFI_IDE_CONTROLLER_INIT_PROTOCOL and
the bus-specific I/O protocol. It enumerates the IDE
buses. This driver will check for the presence of the
EFI_IDE_CONTROLLER_INIT_PROTOCOL on
the controller handle before enumerating the child
devices. This driver uses the presence of the
EFI_IDE_CONTROLLER_INIT_PROTOCOL to
determine whether a controller is an IDE controller or not.
This driver will use bus-specific methods to access the
standard ATA registers (such as the control block,
command block, and bus master DMA registers) for a
particular device. The driver not only knows the address
of a specific register block, but it also knows the layout of
that register block. This driver may produce the
EFI_SCSI_PASSTHRU_PROTOCOL for ATAPI
devices or it may directly manage the ATAPI devices by
producing the EFI_BLOCK_IO_PROTOCOL. This
driver produces the EFI_BLOCK_IO_PROTOCOL
for ATA devices.

Generic SCSI or
ATAPI storage driver

Yes This optional driver manages the ATAPI device using the
EFI_SCSI_PASSTHRU_PROTOCOL and produces
the EFI_BLOCK_IO_PROTOCOL if requested.

continued

 Draft for Review Design Discussion

Version 0.9 August 2004 17

 Table 2-1. Drivers Involved in Configuring IDE Devices (continued)

Driver
Follows the EFI Driver
Model? Description

IDE bus driver and IDE
controller driver
combined as one
driver

Yes It is also possible to combine the IDE bus driver and the
IDE controller driver into one driver. In this case,
EFI_IDE_CONTROLLER_INIT_PROTOCOL is
not installed on the IDE controller handle. The
monolithic driver is responsible for initializing the IDE
controller as well as the IDE devices behind that
controller.
EFI_IDE_CONTROLLER_INIT_PROTOCOL is
mandatory if the IDE devices behind the controller are to
be enumerated by the generic IDE bus driver.

See the EFI 1.10 Specification for the definitions of the Block I/O Protocol and the SCSI Pass Thru
Protocol. The IDE Controller Initialization Protocol is defined in Code Definitions in this
specification.

Sample Implementation for a Simple PCI IDE Controller
This topic provides a sample implementation only. The sequencing of various notifications cannot
be changed. The steps below apply if EFI_IDE_CONTROLLER_INIT_PROTOCOL.EnumAll
= FALSE.
See the EFI 1.10 Specification for definitions of the Driver Binding Protocol, EFI PCI I/O Protocol,
Device Path Protocol, and Block I/O Protocol. See Code Definitions in this specification for the
definition of the IDE Controller Initialization Protocol.
1. The IDE controller driver as well as the IDE bus driver follow the EFI Driver Model. They are

loaded and both install (at least) one instance of the EFI_DRIVER_BINDING_PROTOCOL on
their image handle. An ATA hard drive behind a PCI IDE controller is one of the boot devices.

2. The PCI bus driver enumerates the PCI bus, finds the PCI IDE controller, creates a handle for
it, and installs an instance of EFI_PCI_IO_PROTOCOL and
EFI_DEVICE_PATH_PROTOCOL on that handle.

3. The Boot Device Selection (BDS) phase searches for an appropriate driver to own the IDE
controller device and finds the IDE controller driver. It then connects the IDE controller device
and the IDE controller driver. The IDE controller driver opens the EFI_PCI_IO_PROTOCOL
BY_DRIVER. It may perform some other preprogramming at this point.

4. BDS searches for a driver to own the IDE device and finds the IDE bus driver. The IDE bus
driver’s Supported() function checks for the presence of
EFI_IDE_CONTROLLER_INIT_PROTOCOL on the parent of the IDE device (i.e., the IDE
controller).

5. The EFI Boot Services function ConnectController() calls the Start() function of
the IDE bus driver, which starts the IDE bus enumeration. The following steps are performed
by the Start() function.
a. The IDE bus driver locates the EFI_IDE_CONTROLLER_INIT_PROTOCOL. It opens

the EFI_IDE_CONTROLLER_INIT_PROTOCOL BY_DRIVER. If it needs to open

IDE Controller Initialization Protocol Specification Draft for Review

18 August 2004 Version 0.9

EFI_PCI_IO_PROTOCOL, it may open it by GET_PROTOCOL. The IDE bus driver reads
the EnumAll and ChannelCount fields in
EFI_IDE_CONTROLLER_INIT_PROTOCOL. In this case, EnumAll is FALSE. The
IDE bus driver also obtains the channel number from
Start().RemainingDevicePath.

b. The IDE bus driver calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase
(This, EfiIdeBeforeChannelEnumeration, Channel).

c. The IDE bus driver calls
EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo (This,
Channel, *Enabled, *MaxDevices) to find out the number of devices on this
channel. If *Enabled = FALSE, it exits with an error code. If the device number of the
device to be connected is too large, it exits with an error code.

d. The IDE bus driver calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase
(This, EfiIdeBeforeChannelReset, Channel).

e. The IDE bus driver resets the channel.
f. The IDE bus driver calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase

(This, EfiIdeAfterChannelReset, Channel).
g. The IDE bus driver calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase

(This, EfiIdeBeforeDevicePresenceDetection, Channel). The IDE
controller driver may insert a predelay here or may ensure that various IDE bus signals are
at desired levels.

h. The IDE bus driver attempts to detect devices on the channel. Note than there can be no
more than MaxDevices on the channel.

i. The IDE bus driver calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase
(This, EfiIdeAfterDevicePresenceDetection, Channel).

j. The IDE bus driver calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase
(This, EfiIdeResetMode, Channel). The IDE controller sets up the controller
with the default timings.

k. For all the devices on this channel:
1. The IDE bus driver gathers EFI_IDENTIFY_DATA for the device and submits it to

the IDE controller driver using
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData(). Submit NULL data
for devices that do not exist.

2. The IDE bus driver may call
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() to disqualify
modes that it does not support.

 Draft for Review Design Discussion

Version 0.9 August 2004 19

6. For all the detected devices on this channel:
a. Call EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() to get the

optimum mode settings. The IDE controller driver uses controller-specific algorithms and
platform information to calculate the best modes.
EFI_PLATFORM_IDE_INIT_PROTOCOL provides platform information such as the
following during this calculation:
• User policies (for example, setup options for manual mode selection)
• Platform-implementation details (for example, the platform does not support UDMA

mode 4 or the cable is not an 80 pin cable)
EFI_PLATFORM_IDE_INIT_PROTOCOL is defined in the Intel® Platform Innovation
Framework for EFI Platform IDE Initialization Protocol Specification.

b. The IDE bus driver enables the appropriate modes by sending an ATA SET_FEATURES
command to the device. It the device returns an error, it disqualifies that mode for that
device and goes back to step 6. This time step 6a will not consider the failed mode. The
implementation then returns here to step 6b with new (less optimum) modes.

7. For all the detected devices on this channel, call
EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming() to program the timings. Note
that we reset the mode settings in step 5j, so the settings for nonexistent devices will remain at
their default levels.

8. The IDE bus driver calls EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase (
This, EfiIdeAfterChannelEnumeration, Channel).

9. Install EFI_BLOCK_IO_PROTOCOL on that device handle.

IDE Controller Initialization Protocol Specification Draft for Review

20 August 2004 Version 0.9

 Draft for Review

Version 0.9 August 2004 21

3
Code Definitions

Introduction
This section contains the basic definitions of the IDE Controller Initialization Protocol. The
following protocol is defined in this section:
• EFI_IDE_CONTROLLER_INIT_PROTOCOL
This section also contains the definitions for additional data types and structures that are
subordinate to the structures in which they are called. The following types or structures can be
found in "Related Definitions" of the parent function definition:
• EFI_IDE_CONTROLLER_ENUM_PHASE
• EFI_IDENTIFY_DATA
• EFI_ATA_IDENTIFY_DATA
• EFI_ATAPI_IDENTIFY_DATA
• EFI_ATA_COLLECTIVE_MODE
• EFI_ATA_MODE
• EFI_ATA_EXTENDED_MODE
• EFI_ATA_EXT_TRANSFER_PROTOCOL

IDE Controller Initialization Protocol

EFI_IDE_CONTROLLER_INIT_PROTOCOL

Summary
Provides the basic interfaces to abstract an IDE controller.

GUID
#define EFI_IDE_CONTROLLER_INIT_PROTOCOL_GUID \
{ 0xa1e37052, 0x80d9, 0x4e65, 0xa3, 0x17, 0x3e, 0x9a, 0x55, 0xc4,
0x3e, 0xc9 }

IDE Controller Initialization Protocol Specification Draft for Review

22 August 2004 Version 0.9

Protocol Interface Structure
typedef struct _EFI_IDE_CONTROLLER_INIT_PROTOCOL {
 EFI_IDE_CONTROLLER_GET_CHANNEL_INFO GetChannelInfo;
 EFI_IDE_CONTROLLER_NOTIFY_PHASE NotifyPhase;
 EFI_IDE_CONTROLLER_SUBMIT_DATA SubmitData;
 EFI_IDE_CONTROLLER_DISQUALIFY_MODE DisqualifyMode;
 EFI_IDE_CONTROLLER_CALCULATE_MODE CalculateMode;
 EFI_IDE_CONTROLLER_SET_TIMING SetTiming;
 BOOLEAN EnumAll;
 UINT8 ChannelCount;
} EFI_IDE_CONTROLLER_INIT_PROTOCOL;

Parameters
GetChannelInfo

Returns the information about a specific channel. See the GetChannelInfo()
function description.

NotifyPhase

The notification that the IDE bus driver is about to enter the specified phase during
the enumeration process. See the NotifyPhase() function description.

SubmitData

Submits the Drive Identify data that was returned by the device. See the
SubmitData() function description.

DisqualifyMode

Submits information about modes that should be disqualified. The specified IDE
device does not support these modes and these modes should not be returned by
CalculateMode . See the DisqualifyMode() function description.

CalculateMode

Calculates and returns the optimum mode for a particular IDE device. See the
CalculateMode() function description.

SetTiming

Programs the IDE controller hardware to the default timing or per the modes that
were returned by the last call to CalculateMode(). See the SetTiming()
function description.

EnumAll

Set to TRUE if the enumeration group includes all the channels that are produced by
this controller. FALSE if an enumeration group consists of only one channel.

ChannelCount

The number of channels that are produced by this controller. Parallel ATA (PATA)
controllers can support up to two channels. Advanced Host Controller Interface
(AHCI) Serial ATA (SATA) controllers can support up to 32 channels, each of which
can have up to one device.

 Draft for Review Code Definitions

Version 0.9 August 2004 23

Description
The EFI_IDE_CONTROLLER_INIT_PROTOCOL provides the chipset-specific information to
the IDE bus driver. This protocol is mandatory for IDE controllers if the IDE devices behind the
controller are to be enumerated by an IDE bus driver.
There can only be one instance of EFI_IDE_CONTROLLER_INIT_PROTOCOL for each IDE
controller in a system. It is installed on the handle that corresponds to the IDE controller. An IDE
bus driver that wishes to manage an IDE bus and possibly IDE devices in a system will have to
retrieve the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance that is associated with the
controller to be managed.
A device handle for an IDE controller must contain an EFI_DEVICE_PATH_PROTOCOL.

IDE Controller Initialization Protocol Specification Draft for Review

24 August 2004 Version 0.9

EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo()

Summary
Returns the information about the specified IDE channel.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_GET_CHANNEL_INFO) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 OUT BOOLEAN *Enabled,
 OUT UINT8 *MaxDevices
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
Channel

Zero-based channel number.
Enabled

TRUE if this channel is enabled. Disabled channels are not scanned to see if any
devices are present.

MaxDevices

The maximum number of IDE devices that the bus driver can expect on this channel.
For the ATA/ATAPI specification, version 6, this number will either be 1 or 2. For
Serial ATA (SATA) configurations with a port multiplier, this number can be as
large as 16.

 Draft for Review Code Definitions

Version 0.9 August 2004 25

Description
This function can be used to obtain information about a particular IDE channel. The IDE bus driver
uses this information during the enumeration process.
If Enabled is set to FALSE, the IDE bus driver will not scan the channel. Note that it will not
prevent an operating system driver from scanning the channel.
For most of today’s controllers, MaxDevices will either be 1 or 2. For SATA controllers, this
value will always be 1. SATA configurations can contain SATA port multipliers. SATA port
multipliers behave like SATA bridges and can support up to 16 devices on the other side. If an
SATA port out of the IDE controller is connected to a port multiplier, MaxDevices will be set to
the number of SATA devices that the port multiplier supports. Because today’s port multipliers
support up to 16 SATA devices, this number can be as large as 16. The IDE bus driver is required
to scan for the presence of port multipliers behind an SATA controller and enumerate up to
MaxDevices number of devices behind the port multiplier.
In this context, the devices behind a port multiplier constitute a channel.

Status Codes Returned
EFI_SUCCESS Information was returned without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

IDE Controller Initialization Protocol Specification Draft for Review

26 August 2004 Version 0.9

EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase()

Summary
The notifications from the IDE bus driver that it is about to enter a certain phase of the IDE channel
enumeration process.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_NOTIFY_PHASE) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN EFI_IDE_CONTROLLER_ENUM_PHASE Phase,
 IN UINT8 Channel
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
Phase

The phase during enumeration. Type EFI_IDE_CONTROLLER_ENUM_PHASE is
defined in "Related Definitions" below.

Channel

Zero-based channel number.

Description
This function can be used to notify the IDE controller driver to perform specific actions, including
any chipset-specific initialization, so that the chipset is ready to enter the next phase. Seven
notification points are defined at this time. See "Related Definitions" below for the definition of
various notification points and Sample Implementation for a Simple PCI IDE Controller in the
Design Discussion chapter for usage.
More synchronization points may be added as required in the future.

 Draft for Review Code Definitions

Version 0.9 August 2004 27

Related Definitions
//***
// EFI_IDE_CONTROLLER_ENUM_PHASE
//***
typedef enum {
 EfiIdeBeforeChannelEnumeration,
 EfiIdeAfterChannelEnumeration,
 EfiIdeBeforeChannelReset,
 EfiIdeAfterChannelReset,
 EfiIdeBusBeforeDevicePresenceDetection,
 EfiIdeBusAfterDevicePresenceDetection,
 EfiIdeResetMode,
 EfiIdeBusPhaseMaximum
} EFI_IDE_CONTROLLER_ENUM_PHASE;

Following is a description of the fields in the above definition.

EfiIdeBeforeChannelEnumeration The IDE bus driver is about to begin enumerating the devices

behind the specified channel. This notification can be used to
perform any chipset-specific programming.

EfiIdeAfterChannelEnumeration The IDE bus driver has completed enumerating the devices
behind the specified channel. This notification can be used to
perform any chipset-specific programming.

EfiIdeBeforeChannelReset The IDE bus driver is about to reset the devices behind the
specified channel. This notification can be used to perform any
chipset-specific programming.

EfiIdeAfterChannelReset The IDE bus driver has completed resetting the devices behind
the specified channel. This notification can be used to perform
any chipset-specific programming.

EfiIdeBusBeforeDevicePresenceDetection The IDE bus driver is about to detect the presence of devices
behind the specified channel. This notification can be used to
set up the bus signals to default levels or for implementing
predelays.

EfiIdeBusAfterDevicePresenceDetection The IDE bus driver is done with detecting the presence of
devices behind the specified channel. This notification can be
used to perform any chipset-specific programming.

EfiIdeResetMode The IDE bus is requesting the IDE controller driver to reprogram
the IDE controller hardware and thereby reset all the mode and
timing settings to default settings.

IDE Controller Initialization Protocol Specification Draft for Review

28 August 2004 Version 0.9

Status Codes Returned
EFI_SUCCESS The notification was accepted without any errors.

EFI_NOT_SUPPORTED Phase is not supported.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_NOT_READY This phase cannot be entered at this time; for example, an
attempt was made to enter a Phase without having entered one
or more previous Phase.

 Draft for Review Code Definitions

Version 0.9 August 2004 29

EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()

Summary
Submits the device information to the IDE controller driver.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_SUBMIT_DATA) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_IDENTIFY_DATA *IdentifyData
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
Channel

Zero-based channel number.
Device

Zero-based device number on the Channel.
IdentifyData

The device’s response to the ATA IDENTIFY_DEVICE command. Type
EFI_IDENTIFY_DATA is defined in "Related Definitions" below.

Description
This function is used by the IDE bus driver to pass detailed information about a particular device to
the IDE controller driver. The IDE bus driver obtains this information by issuing an ATA or
ATAPI IDENTIFY_DEVICE command. IdentifyData is the pointer to the response data
buffer. The IdentifyData buffer is owned by the IDE bus driver, and the IDE controller driver
must make a local copy of the entire buffer or parts of the buffer as needed. The original
IdentifyData buffer pointer may not be valid when
EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode() or
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode() is called at a later point.
The IDE controller driver may consult various fields of EFI_IDENTIFY_DATA to compute the
optimum mode for the device. These fields are not limited to the timing information. For example,
an implementation of the IDE controller driver may examine the vendor and type/mode field to
match known bad drives.
The IDE bus driver may submit drive information in any order, as long as it submits information for
all the devices belonging to the enumeration group before CalculateMode() is called for any
device in that enumeration group. If a device is absent, SubmitData() should be called with

IDE Controller Initialization Protocol Specification Draft for Review

30 August 2004 Version 0.9

IdentifyData set to NULL. The IDE controller driver may not have any other mechanism to
know whether a device is present or not. Therefore, setting IdentifyData to NULL does not
constitute an error condition. SubmitData() can be called only once for a given (Channel,
Device) pair.

Related Definitions
//***
// EFI_IDENTIFY_DATA
//***
typedef union {
 EFI_ATA_IDENTIFY_DATA AtaData;
 EFI_ATAPI_IDENTIFY_DATA AtapiData;
} EFI_IDENTIFY_DATA;

#define EFI_ATAPI_DEVICE_IDENTIFY_DATA 0x8000

AtaData

The data that is returned by an ATA device upon successful completion of the ATA
IDENTIFY_DEVICE command. The IDENTIFY_DEVICE command is defined in
the ATA/ATAPI specification. Type EFI_ATA_IDENTIFY_DATA is defined
below.

AtapiData

The data that is returned by an ATAPI device upon successful completion of the
ATA IDENTIFY_PACKET_DEVICE command. The
IDENTIFY_PACKET_DEVICE command is defined in the ATA/ATAPI
specification. Type EFI_ATAPI_IDENTIFY_DATA is defined below.

Following is a description of the field in the above definition.

EFI_ATAPI_DEVICE_IDENTIFY_DATA This flag indicates whether the IDENTIFY data is a response
from an ATA device (EFI_ATA_IDENTIFY_DATA) or
response from an ATAPI device
(EFI_ATAPI_IDENTIFY_DATA). According to the
ATA/ATAPI specification, EFI_IDENTIFY_DATA is for an
ATA device if bit 15 of the Config field is zero. The Config field
is common to both EFI_ATA_IDENTIFY_DATA and
EFI_ATAPI_IDENTIFY_DATA.

 Draft for Review Code Definitions

Version 0.9 August 2004 31

//***
// EFI_ATA_IDENTIFY_DATA
//***
//
// This structure definition is not part of the protocol
// definition because the ATA/ATAPI Specification controls
// the definition of all the fields. The ATA/ATAPI
// Specification can obsolete old fields or redefine existing
// fields. This definition is provided here for reference only.
//

#pragma pack(1)
typedef struct {
 UINT16 config; // General Configuration
 UINT16 cylinders; // Number of Cylinders
 UINT16 reserved_2;
 UINT16 heads; //Number of logical heads
 UINT16 vendor_data1;
 UINT16 vendor_data2;
 UINT16 sectors_per_track;
 UINT16 vendor_specific_7_9[3];
 CHAR8 SerialNo[20]; // ASCII
 UINT16 vendor_specific_20_21[2];
 UINT16 ecc_bytes_available;
 CHAR8 FirmwareVer[8]; // ASCII
 CHAR8 ModelName[40]; // ASCII
 UINT16 multi_sector_cmd_max_sct_cnt;
 UINT16 reserved_48;
 UINT16 capabilities;
 UINT16 reserved_50;
 UINT16 pio_cycle_timing;
 UINT16 reserved_52;
 UINT16 field_validity;
 UINT16 current_cylinders;
 UINT16 current_heads;
 UINT16 current_sectors;
 UINT16 CurrentCapacityLsb;
 UINT16 CurrentCapacityMsb;
 UINT16 reserved_59;
 UINT16 user_addressable_sectors_lo;
 UINT16 user_addressable_sectors_hi;
 UINT16 reserved_62;
 UINT16 multi_word_dma_mode;
 UINT16 advanced_pio_modes;
 UINT16 min_multi_word_dma_cycle_time;
 UINT16 rec_multi_word_dma_cycle_time;
 UINT16 min_pio_cycle_time_without_flow_control;
 UINT16 min_pio_cycle_time_with_flow_control;
 UINT16 reserved_69_79[11];

IDE Controller Initialization Protocol Specification Draft for Review

32 August 2004 Version 0.9

 UINT16 major_version_no;
 UINT16 minor_version_no;
 UINT16 command_set_supported_82; // word 82
 UINT16 command_set_supported_83; // word 83
 UINT16 command_set_feature_extn; // word 84
 UINT16 command_set_feature_enb_85; // word 85
 UINT16 command_set_feature_enb_86; // word 86
 UINT16 command_set_feature_default; // word 87
 UINT16 ultra_dma_mode; // word 88
 UINT16 reserved_89_127[39];
 UINT16 security_status;
 UINT16 vendor_data_129_159[31];
 UINT16 reserved_160_255[96];
} EFI_ATA_IDENTIFY_DATA;
#pragma pack()

//***
// EFI_ATAPI_IDENTIFY_DATA
//***
#pragma pack(1)
typedef struct {
 UINT16 config; // General Configuration
 UINT16 obsolete_1;
 UINT16 specific_config;
 UINT16 obsolete_3;
 UINT16 retired_4_5[2];
 UINT16 obsolete_6;
 UINT16 cfa_reserved_7_8[2];
 UINT16 retired_9;
 CHAR8 SerialNo[20]; // ASCII
 UINT16 retired_20_21[2];
 UINT16 obsolete_22;
 CHAR8 FirmwareVer[8]; // ASCII
 CHAR8 ModelName[40]; // ASCII
 UINT16 multi_sector_cmd_max_sct_cnt;
 UINT16 reserved_48;
 UINT16 capabilities_49;
 UINT16 capabilities_50;
 UINT16 obsolete_51_52[2];
 UINT16 field_validity;
 UINT16 obsolete_54_58[5];
 UINT16 mutil_sector_setting;
 UINT16 user_addressable_sectors_lo;
 UINT16 user_addressable_sectors_hi;
 UINT16 obsolete_62;
 UINT16 multi_word_dma_mode;
 UINT16 advanced_pio_modes;

 Draft for Review Code Definitions

Version 0.9 August 2004 33

 UINT16 min_multi_word_dma_cycle_time;
 UINT16 rec_multi_word_dma_cycle_time;
 UINT16 min_pio_cycle_time_without_flow_control;
 UINT16 min_pio_cycle_time_with_flow_control;
 UINT16 reserved_69_74[6];
 UINT16 queue_depth;
 UINT16 reserved_76_79[4];
 UINT16 major_version_no;
 UINT16 minor_version_no;
 UINT16 cmd_set_support_82;
 UINT16 cmd_set_support_83;
 UINT16 cmd_feature_support;
 UINT16 cmd_feature_enable_85;
 UINT16 cmd_feature_enable_86;
 UINT16 cmd_feature_default;
 UINT16 ultra_dma_select;
 UINT16 time_required_for_sec_erase;
 UINT16 time_required_for_enhanced_sec_erase;
 UINT16 current_advanced_power_mgmt_value;
 UINT16 master_pwd_revison_code;
 UINT16 hardware_reset_result;
 UINT16 current_auto_acoustic_mgmt_value;
 UINT16 reserved_95_99[5];
 UINT16 max_user_lba_for_48bit_addr[4];
 UINT16 reserved_104_126[23];
 UINT16 removable_media_status_notification_support;
 UINT16 security_status;
 UINT16 vendor_data_129_159[31];
 UINT16 cfa_power_mode;
 UINT16 cfa_reserved_161_175[15];
 UINT16 current_media_serial_no[30];
 UINT16 reserved_206_254[49];
 UINT16 integrity_word;
} EFI_ATAPI_IDENTIFY_DATA;
#pragma pack()

Status Codes Returned
EFI_SUCCESS The information was accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

IDE Controller Initialization Protocol Specification Draft for Review

34 August 2004 Version 0.9

EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()

Summary
Disqualifies specific modes for an IDE device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_DISQUALIFY_MODE) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_ATA_COLLECTIVE_MODE *BadModes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
Channel

Zero-based channel number.
Device

Zero-based device number on the Channel.
BadModes

The modes that the device does not support and that should be disqualified. Type
EFI_ATA_COLLECTIVE_MODE is defined in "Related Definitions" below.

Description
This function allows the IDE bus driver or other drivers (such as platform drivers) to reject certain
timing modes and request the IDE controller driver to recalculate modes. This function allows the
IDE bus driver and the IDE controller driver to negotiate the timings on a per-device basis. This
function is useful in the case of drives that lie about their capabilities. An example is when the IDE
device fails to accept the timing modes that are calculated by the IDE controller driver based on the
response to the Identify Drive command.
If the IDE bus driver does not want to limit the ATA timing modes and leave that decision to the
IDE controller driver, it can either not call this function for the given device or call this function
and set the Valid flag to FALSE for all modes that are listed in
EFI_ATA_COLLECTIVE_MODE.
The IDE bus driver may disqualify modes for a device in any order and any number of times.
This function can be called multiple times to invalidate multiple modes of the same type (e.g.,
Programmed Input/Output [PIO] modes 3 and 4). See the ATA/ATAPI specification for more
information on PIO modes.

 Draft for Review Code Definitions

Version 0.9 August 2004 35

For Serial ATA (SATA) controllers, this member function can be used to disqualify a higher
transfer rate mode on a given channel. For example, a platform driver may inform the IDE
controller driver to not use second-generation (Gen2) speeds for a certain SATA drive.

Related Definitions
//**
// EFI_ATA_COLLECTIVE_MODE
//**
typedef struct {
 EFI_ATA_MODE PioMode;
 EFI_ATA_MODE SingleWordDmaMode;
 EFI_ATA_MODE MultiWordDmaMode;
 EFI_ATA_MODE UdmaMode;
 UINT32 ExtModeCount;
 EFI_ATA_EXTENDED_MODE ExtMode[1];
} EFI_ATA_COLLECTIVE_MODE;

PioMode

This field specifies the PIO mode. PIO modes are defined in the ATA/ATAPI
specification. The ATA/ATAPI specification defines the enumeration. In other
words, a value of 1 in this field means PIO mode 1. The actual meaning of PIO mode
1 is governed by the ATA/ATAPI specification. Type EFI_ATA_MODE is defined
below.

SingleWordDmaMode

This field specifies the single word DMA mode. Single word DMA modes are
defined in the ATA/ATAPI specification, versions 1 and 2. Single word DMA
support was obsoleted in the ATA/ATAPI specification, version 3; therefore, most
devices and controllers will not support this transfer mode. The ATA/ATAPI
specification defines the enumeration. In other words, a value of 1 in this field means
single word DMA mode 1. The actual meaning of single word DMA mode 1 is
governed by the ATA/ATAPI specification.

MultiWordDmaMode

This field specifies the multiword DMA mode. Various multiword DMA modes are
defined in the ATA/ATAPI specification. A value of 1 in this field means multiword
DMA mode 1. The actual meaning of multiword DMA mode 1 is governed by the
ATA/ATAPI specification.

UdmaMode

This field specifies the ultra DMA (UDMA) mode. UDMA modes are defined in the
ATA/ATAPI specification. A value of 1 in this field means UDMA mode 1. The
actual meaning of UDMA mode 1 is governed by the ATA/ATAPI specification.

IDE Controller Initialization Protocol Specification Draft for Review

36 August 2004 Version 0.9

ExtModeCount

The number of extended-mode bitmap entries. Extended modes describe transfer
protocols beyond PIO, single word DMA, multiword DMA, and UDMA. This field
can be zero and provides extensibility.

ExtMode

ExtModeCount number of entries. Each entry represents a transfer protocol other
than the ones defined above (i.e., PIO, single word DMA, multiword DMA, and
UDMA). This field is defined for extensibility. At this time, only one extended
transfer protocol is defined to cover SATA transfers. Type
EFI_ATA_EXTENDED_MODE is defined below.

//**
// EFI_ATA_MODE
//**
typedef struct {
 BOOLEAN Valid;
 UINT32 Mode;
} EFI_ATA_MODE;

Valid

TRUE if Mode is valid.
Mode

The actual ATA mode. This field is not a bit map.

//**
// EFI_ATA_EXTENDED_MODE
//**
typedef struct {
 EFI_ATA_EXT_TRANSFER_PROTOCOL TransferProtocol;
 UINT32 Mode;
} EFI_ATA_EXTENDED_MODE;

TransferProtocol

An enumeration defining various transfer protocols other than the protocols that exist
at the time this specification was developed (i.e., PIO, single word DMA, multiword
DMA, and UDMA). Each transfer protocol is associated with a mode. The various
transfer protocols are defined by the ATA/ATAPI specification. This enumeration
makes the interface extensible because we can support new transport protocols
beyond UDMA. Type EFI_ATA_EXT_TRANSFER_PROTOCOL is defined below.

 Draft for Review Code Definitions

Version 0.9 August 2004 37

Mode

The mode for operating the transfer protocol that is identified by
TransferProtocol.

//**
// EFI_ATA_EXT_TRANSFER_PROTOCOL
//**
//
// This extended mode describes the SATA physical protocol.
// SATA physical layers can operate at different speeds.
// These speeds are defined below. Various PATA protocols
// and associated modes are not applicable to SATA devices.
//
typedef enum {
 EfiAtaSataTransferProtocol
} EFI_ATA_EXT_TRANSFER_PROTOCOL;

#define EFI_SATA_AUTO_SPEED 0
#define EFI_SATA_GEN1_SPEED 1
#define EFI_SATA_GEN2_SPEED 2

Following is a description of the fields in the above definition.

EFI_SATA_AUTO_SPEED Automatically detects the optimum SATA speed.

EFI_SATA_GEN1_SPEED Indicates a first-generation (Gen1) SATA speed.

EFI_SATA_GEN2_SPEED Indicates a second-generation (Gen2) SATA speed.

Status Codes Returned
EFI_SUCCESS The modes were accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_INVALID_PARAMETER IdentifyData is NULL.

IDE Controller Initialization Protocol Specification Draft for Review

38 August 2004 Version 0.9

EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode()

Summary
Returns the information about the optimum modes for the specified IDE device.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_CALCULATE_MODES) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 OUT EFI_ATA_COLLECTIVE_MODE **SupportedModes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
Channel

Zero-based channel number.
Device

Zero-based device number on the Channel.
SupportedModes

The optimum modes for the device. Type EFI_ATA_COLLECTIVE_MODE is
defined in EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode().

Description
This function is used by the IDE bus driver to obtain the optimum ATA modes for a specific
device. The IDE controller driver takes into account the following while calculating the mode:
• The IdentifyData inputs to

EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
• The BadModes inputs to

EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()
The IDE bus driver is required to call SubmitData() for all the devices that belong to an
enumeration group before calling CalculateMode() for any device in the same group.
The IDE controller driver will use controller- and possibly platform-specific algorithms to arrive at
SupportedModes. The IDE controller may base its decision on user preferences and other
considerations as well. This function may be called multiple times because the IDE bus driver may
renegotiate the mode with the IDE controller driver using DisqualifyMode().
The IDE bus driver may collect timing information for various devices in any order. The IDE bus
driver is responsible for making sure that all the dependencies are satisfied; for example, the

 Draft for Review Code Definitions

Version 0.9 August 2004 39

SupportedModes information for device A that was previously returned may become stale after
a call to DisqualifyMode() for device B.
The buffer SupportedModes is allocated by the callee because the caller does not necessarily
know the size of the buffer. The type EFI_ATA_COLLECTIVE_MODE is defined in a way that
allows for future extensibility and can be of variable length. This memory pool should be
deallocated by the caller when it is no longer necessary.
The IDE controller driver for a Serial ATA (SATA) controller can use this member function to
force a lower speed (first-generation [Gen1] speeds on a second-generation [Gen2]–capable
hardware). The IDE controller driver can also allow the IDE bus driver to stay with the speed that
has been negotiated by the physical layer.

Status Codes Returned
EFI_SUCCESS SupportedModes was returned.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_INVALID_PARAMETER SupportedModes is NULL.

EFI_NOT_READY Modes cannot be calculated due to a lack of data. This error may
happen if SubmitData() and DisqualifyData()
 were not called for at least one drive in the same enumeration
group.

IDE Controller Initialization Protocol Specification Draft for Review

40 August 2004 Version 0.9

EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()

Summary
Commands the IDE controller driver to program the IDE controller hardware so that the specified
device can operate at the specified mode.

Prototype
typedef
EFI_STATUS
(EFIAPI *EFI_IDE_CONTROLLER_SET_TIMING) (
 IN EFI_IDE_CONTROLLER_INIT_PROTOCOL *This,
 IN UINT8 Channel,
 IN UINT8 Device,
 IN EFI_ATA_COLLECTIVE_MODE *Modes
);

Parameters
This

Pointer to the EFI_IDE_CONTROLLER_INIT_PROTOCOL instance.
Channel

Zero-based channel number.
Device

Zero-based device number on the Channel.
Modes

The modes to set. Type EFI_ATA_COLLECTIVE_MODE is defined in
EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode().

Description
This function is used by the IDE bus driver to instruct the IDE controller driver to program the IDE
controller hardware to the specified modes. This function can be called only once for a particular
device. For a Serial ATA (SATA) Advanced Host Controller Interface (AHCI) controller, no
controller-specific programming may be required.

Status Codes Returned
EFI_SUCCESS The command was accepted without any errors.

EFI_INVALID_PARAMETER Channel is invalid (Channel >= ChannelCount).

EFI_INVALID_PARAMETER Device is invalid.

EFI_NOT_READY Modes cannot be set at this time due to lack of data.

EFI_DEVICE_ERROR Modes cannot be set due to hardware failure. The IDE bus
driver should not use this device.

	Intel® Platform Innovation Framework for EFI IDE Controller Initialization Protocol Specification
	Disclaimer
	Revision History
	Contents
	1 Introduction
	Overview
	Conventions Used in This Document
	Data Structure Descriptions
	Protocol Descriptions
	Procedure Descriptions
	Pseudo-Code Conventions
	Typographic Conventions

	2 Design Discussion
	IDE Controller Initialization Protocol Overview
	IDE Controller Terms
	IDE Controller Initialization Protocol References
	Background
	IDE Requirements
	Simplifying the Design of IDE Drivers
	Configuring Devices on the IDE Bus

	Sample Implementation for a Simple PCI IDE Controller

	3 Code Definitions
	Introduction
	IDE Controller Initialization Protocol
	EFI_IDE_CONTROLLER_INIT_PROTOCOL
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.GetChannelInfo()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.NotifyPhase()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.SubmitData()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.DisqualifyMode()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.CalculateMode()
	EFI_IDE_CONTROLLER_INIT_PROTOCOL.SetTiming()

